136 Commits

Author SHA1 Message Date
Yuan
cafb8e06c5
[CI/BUILD] enable intel queue for longer CPU tests (#4113) 2024-06-03 10:39:50 -07:00
Tyler Michael Smith
cbb2f59cc8
[Kernel] Pass a device pointer into the quantize kernel for the scales (#5159) 2024-06-03 09:52:30 -07:00
Divakar Verma
a66cf40b20
[Kernel][ROCm][AMD] enable fused topk_softmax kernel for moe layer (#4927)
This PR enables the fused topk_softmax kernel used in moe layer for HIP
2024-06-02 14:13:26 -07:00
Varun Sundar Rabindranath
f081c3ce4b
[Kernel] Update Cutlass fp8 configs (#5144)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
2024-06-01 08:46:07 +00:00
Tyler Michael Smith
260d119e86
[Kernel] Refactor CUTLASS kernels to always take scales that reside on the GPU (#5137) 2024-06-01 06:45:32 +00:00
Tyler Michael Smith
1197e02141
[Build] Guard against older CUDA versions when building CUTLASS 3.x kernels (#5168) 2024-05-31 17:21:38 -07:00
Simon Mo
e9d3aa04f6
Revert "[Kernel] Marlin_24: Ensure the mma.sp instruction is using the ::ordered_metadata modifier (introduced with PTX 8.5)" (#5149) 2024-05-30 22:00:26 -07:00
SnowDist
a22dea54d3
[Model] Support MAP-NEO model (#5081)
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2024-05-30 19:24:41 -07:00
Alexander Matveev
6d21fa1cad
[Kernel] Marlin_24: Ensure the mma.sp instruction is using the ::ordered_metadata modifier (introduced with PTX 8.5) (#5136) 2024-05-30 21:02:11 -05:00
Eric Xihui Lin
8e192ff967
[Kernel][Backend][Model] Blocksparse flash attention kernel and Phi-3-Small model (#4799)
Co-authored-by: beagleski <yunanzhang@microsoft.com>
Co-authored-by: bapatra <bapatra@microsoft.com>
Co-authored-by: Barun Patra <codedecde@users.noreply.github.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-05-24 22:00:52 -07:00
Dipika Sikka
a1242324c9
[Kernel] Initial Activation Quantization Support (#4525)
Co-authored-by: Varun Sundar Rabindranath <varunsundar08@gmail.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2024-05-23 21:29:18 +00:00
Alexander Matveev
6066253296
Marlin 24 prefill performance improvement (about 25% better on average) (#4983) 2024-05-23 02:39:27 -04:00
raywanb
97b030005c
[Model] LoRA gptbigcode implementation (#3949) 2024-05-22 13:58:59 -07:00
Tyler Michael Smith
8674f9880e
[Kernel] Fixup for CUTLASS kernels in CUDA graphs (#4954)
Pass the CUDA stream into the CUTLASS GEMMs, to avoid future issues with CUDA graphs
2024-05-22 14:10:43 +00:00
Michael Goin
5f6d10c14c
[CI/Build] Enforce style for C++ and CUDA code with clang-format (#4722) 2024-05-22 07:18:41 +00:00
Alexander Matveev
da5a0b539d
Remove marlin warning (#4918) 2024-05-20 14:55:34 +00:00
Tyler Michael Smith
2060e93659
[Kernel] Add w8a8 CUTLASS kernels (#4749) 2024-05-16 18:32:50 -04:00
Silencio
8435b207af
[Kernel] Add punica dimension for Qwen1.5-32B LoRA (#4850)
Co-authored-by: Silencio <silencio@adsl-99-6-187-6.dsl.irvnca.sbcglobal.net>
2024-05-16 11:16:09 -07:00
Alexander Matveev
6979ade384
Add GPTQ Marlin 2:4 sparse structured support (#4790)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-05-16 12:56:15 -04:00
Jinzhen Lin
99caa49106
[Kernel] add bfloat16 support for gptq marlin kernel (#4788) 2024-05-16 09:55:29 -04:00
Steve Grubb
dac6a3f6ed
[Misc] Apply a couple g++ cleanups (#4719) 2024-05-10 13:37:05 +00:00
Cody Yu
c833101740
[Kernel] Refactor FP8 kv-cache with NVIDIA float8_e4m3 support (#4535) 2024-05-09 18:04:17 -06:00
kliuae
ff5abcd746
[ROCm] Add support for Punica kernels on AMD GPUs (#3140)
Co-authored-by: miloice <jeffaw99@hotmail.com>
2024-05-09 09:19:50 -07:00
alexm-nm
e288df0632
[Bugfix] Fine-tune gptq_marlin configs to be more similar to marlin (#4626) 2024-05-08 17:14:31 -07:00
youkaichao
20cfcdec99
[Core][Optimization] change python dict to pytorch tensor for blocks to swap (#4659) 2024-05-08 12:07:05 -07:00
youkaichao
63575bc2e1
[Core][Optimization] change python dict to pytorch tensor (#4607) 2024-05-06 21:30:27 -07:00
Philipp Moritz
a98187cf72
[Kernel] Make static FP8 scaling more robust (#4570)
Previously FP8 static scaling works if the scales are overestimating the maxima of all activation tensors during computation. However this will not always be the case even if the scales were calibrated very carefully. For example, with the activations in my checkpoint

https://huggingface.co/pcmoritz/Mixtral-8x7B-v0.1-fp8-act-scale

(which was calibrated on https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k), I'm getting the following mostly random performance on MMLU:

|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.2295|±  |0.0035|
| - humanities     |N/A    |none  |     5|acc   |0.2421|±  |0.0062|
| - other          |N/A    |none  |     5|acc   |0.2398|±  |0.0076|
| - social_sciences|N/A    |none  |     5|acc   |0.2171|±  |0.0074|
| - stem           |N/A    |none  |     5|acc   |0.2125|±  |0.0073|
With the fix in this PR where the scaled activations are clamped between [-std::numeric_limits<c10::Float8_e4m3fn>::max(), std::numeric_limits<c10::Float8_e4m3fn>::max()] to make sure there are no NaNs, the performance is

|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7008|±  |0.0036|
| - humanities     |N/A    |none  |     5|acc   |0.6453|±  |0.0065|
| - other          |N/A    |none  |     5|acc   |0.7692|±  |0.0072|
| - social_sciences|N/A    |none  |     5|acc   |0.8083|±  |0.0070|
| - stem           |N/A    |none  |     5|acc   |0.6115|±  |0.0083|
This is not perfect yet but is getting very close to the FP16 / dynamic activation scale performance.
2024-05-06 17:39:28 -07:00
Lily Liu
43c413ec57
[Kernel] Use flashinfer for decoding (#4353)
Co-authored-by: LiuXiaoxuanPKU <llilyliupku@gmail.com>
2024-05-03 15:51:27 -07:00
SangBin Cho
3521ba4f25
[Core][Model runner refactoring 1/N] Refactor attn metadata term (#4518) 2024-05-03 10:20:12 -07:00
alexm-nm
7038e8b803
[Kernel] Support running GPTQ 8-bit models in Marlin (#4533) 2024-05-02 12:56:22 -04:00
Robert Shaw
73c8d677e5
[Kernel] Marlin Expansion: Support AutoGPTQ Models with Marlin (#3922)
Co-authored-by: alexm <alexm@neuralmagic.com>
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-04-29 09:35:34 -07:00
Austin Veselka
eefeb16464
[Kernel] Full Tensor Parallelism for LoRA Layers (#3524)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-04-27 00:03:48 -07:00
Philipp Moritz
12628d3c78
[Kernel] Optimize FP8 support for MoE kernel / Mixtral via static scales (#4343)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-27 04:49:59 +00:00
alexm-nm
aae08249ac
[Bugfix] Fix marlin kernel crash on H100 (#4218)
This PR addresses the Marlin kernel H100 crash that was reported here: neuralmagic#187.
The reason for the crash was the inline PTX assembly that introduced the async_copy with streaming behavior. The solution is to use the more standard PTX for async_copy (without the fractional L2 policy for "evict_first"). There is no performance difference between standard async_copy PTX and the previous one.
2024-04-24 10:35:01 -07:00
Woosuk Kwon
468d761b32
[Misc] Reduce supported Punica dtypes (#4304) 2024-04-23 18:54:33 -07:00
Philipp Moritz
eace8bf0b9
[Kernel] FP8 support for MoE kernel / Mixtral (#4244)
This PR is the first step towards fixing https://github.com/vllm-project/vllm/pull/3208

It implements dynamic per-tensor scaling (see https://github.com/vllm-project/vllm/pull/4118), so users do not need to compute activation scales on a calibration dataset and they also don't need to convert their model checkpoints. It is enough to specify the `quantization="fp8"` argument. You can try out the PR like this:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="mistralai/Mixtral-8x7B-Instruct-v0.1", tensor_parallel_size=2, quantization="fp8")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```

**Performance**: For this PR, the focus is on making the code clean (while still trying to get reasonable performance), there is a bunch of optimizations that we will submit as a follow up PR that significantly improve the performance (similar to the numbers in https://github.com/vllm-project/vllm/pull/3954). With this PR, the results are as follows:

<img width="725" alt="Screenshot 2024-04-21 at 1 31 50 PM" src="https://github.com/vllm-project/vllm/assets/113316/d8fe1118-07a0-4d4e-8530-37a77d465a03">


**Accuracy**: The accuracy with this PR on MMLU on `mistralai/Mixtral-8x7B-v0.1` is as follows:

```
|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7018|±  |0.0036|
| - humanities     |N/A    |none  |     5|acc   |0.6472|±  |0.0065|
| - other          |N/A    |none  |     5|acc   |0.7673|±  |0.0072|
| - social_sciences|N/A    |none  |     5|acc   |0.8099|±  |0.0070|
| - stem           |N/A    |none  |     5|acc   |0.6131|±  |0.0083|
```
this compares favorably with the fp16 results which are
```
|      Groups      |Version|Filter|n-shot|Metric|Value |   |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu              |N/A    |none  |     0|acc   |0.7020|±  |0.1313|
| - humanities     |N/A    |none  |     5|acc   |0.6425|±  |0.1349|
| - other          |N/A    |none  |     5|acc   |0.7744|±  |0.1038|
| - social_sciences|N/A    |none  |     5|acc   |0.8131|±  |0.0695|
| - stem           |N/A    |none  |     5|acc   |0.6108|±  |0.1383|
```

Happy hacking!
2024-04-24 01:18:23 +00:00
James Fleming
2b7949c1c2
AQLM CUDA support (#3287)
Co-authored-by: mgoin <michael@neuralmagic.com>
2024-04-23 13:59:33 -04:00
Shoichi Uchinami
a53222544c
[Kernel] Add punica dimension for Swallow-MS-7B LoRA (#4134) 2024-04-17 10:02:45 -07:00
Jee Li
989ae2538d
[Kernel] Add punica dimension for Baichuan-13B (#4053) 2024-04-13 07:55:05 -07:00
Antoni Baum
1e96c3341a
Add extra punica sizes to support bigger vocabs (#4015) 2024-04-11 22:18:57 +00:00
Antoni Baum
a10d3056da
[Core] Set linear_weights directly on the layer (#3977) 2024-04-11 16:35:51 -04:00
fuchen.ljl
08ccee1e83
punica fix-bgmv-kernel-640 (#4007) 2024-04-11 08:59:26 -07:00
Matt Wong
59a6abf3c9
[Hotfix][CI/Build][Kernel] CUDA 11.8 does not support layernorm optimizations (#3782) 2024-04-08 14:31:02 -07:00
Woosuk Kwon
498eb5cfa3
[Bugfix] Add kv_scale input parameter to CPU backend (#3840) 2024-04-04 04:33:08 +00:00
Adrian Abeyta
2ff767b513
Enable scaled FP8 (e4m3fn) KV cache on ROCm (AMD GPU) (#3290)
Co-authored-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
Co-authored-by: HaiShaw <hixiao@gmail.com>
Co-authored-by: AdrianAbeyta <Adrian.Abeyta@amd.com>
Co-authored-by: Matthew Wong <Matthew.Wong2@amd.com>
Co-authored-by: root <root@gt-pla-u18-08.pla.dcgpu>
Co-authored-by: mawong-amd <156021403+mawong-amd@users.noreply.github.com>
Co-authored-by: ttbachyinsda <ttbachyinsda@outlook.com>
Co-authored-by: guofangze <guofangze@kuaishou.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: jacobthebanana <50071502+jacobthebanana@users.noreply.github.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2024-04-03 14:15:55 -07:00
bigPYJ1151
0e3f06fe9c
[Hardware][Intel] Add CPU inference backend (#3634)
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
Co-authored-by: Yuan Zhou <yuan.zhou@intel.com>
2024-04-01 22:07:30 -07:00
mawong-amd
b6d103542c
[Kernel] Layernorm performance optimization (#3662) 2024-03-30 14:26:38 -07:00
Jee Li
566b57c5c4
[Kernel] support non-zero cuda devices in punica kernels (#3636) 2024-03-27 00:37:42 +00:00
Jee Li
8af890a865
Enable more models to inference based on LoRA (#3382)
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2024-03-25 18:09:31 -07:00
Hanzhi Zhou
f721096d48
[BugFix] Some fixes for custom allreduce kernels (#2760) 2024-03-21 23:02:58 -07:00