[CI/Build] LoRA: Delete long context tests (#15503)

Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
This commit is contained in:
Varun Sundar Rabindranath 2025-03-25 17:18:34 -07:00 committed by GitHub
parent a5cfbab3c8
commit ff38f0a32c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 1 additions and 304 deletions

View File

@ -287,7 +287,7 @@ steps:
source_file_dependencies:
- vllm/lora
- tests/lora
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_minicpmv_tp.py --ignore=lora/test_transfomers_model.py
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_minicpmv_tp.py --ignore=lora/test_transfomers_model.py
parallelism: 4
- label: PyTorch Fullgraph Smoke Test # 9min
@ -592,8 +592,6 @@ steps:
# FIXIT: find out which code initialize cuda before running the test
# before the fix, we need to use spawn to test it
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
# This test runs llama 13B, so it is required to run on 4 GPUs.
- pytest -v -s -x lora/test_long_context.py
# There is some Tensor Parallelism related processing logic in LoRA that
# requires multi-GPU testing for validation.
- pytest -v -s -x lora/test_chatglm3_tp.py

View File

@ -1,301 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
import ast
from typing import Optional
import numpy as np
import pytest
import vllm
from vllm import SamplingParams
from vllm.lora.layers import LinearScalingRotaryEmbeddingWithLoRA
from vllm.lora.request import LoRARequest
from vllm.model_executor.layers.rotary_embedding import (
LinearScalingRotaryEmbedding)
from .data.long_context_test_data import prompts_and_responses
context_len_to_scaling_factor = {
"16k": 4,
"32k": 8,
}
# We use the same sampling params for all requests
sampling_params = SamplingParams(
temperature=0,
max_tokens=100,
)
def _create_lora_request(lora_id, long_context_infos):
context_len = long_context_infos[lora_id]["context_length"]
scaling_factor = context_len_to_scaling_factor[context_len]
return LoRARequest(
# There are 2 LoRAs for 16K, we need to add lora_id to indicate
# they are different LoRAs.
context_len + str(lora_id),
lora_id,
long_context_infos[lora_id]["lora"],
None,
4096 * scaling_factor,
)
def evaluate_json_response(model_response, golden_response):
"""Evaluates the model response against the golden response.
Returns a score between 0 and 1, where 1 is a perfect match and 0 is no
match. The score quantifies how well the model is able to extract the
golden JSON from the long context.
"""
try:
model_response = ast.literal_eval(model_response)
except Exception as e:
raise ValueError(
f"Model response is not a valid JSON. Expected {golden_response}, "
f"got {model_response}") from e
# Normally, we would flatten the dictionary and compare the values, but in
# this case, we know that the dictionary is only 2 levels deep
positive_values = 0
total_values = 0
# We look at all the attributes of the person that we are extracting a
# biography of and copmare them to the golden response
for person_attribute, person_attribute_value in golden_response.items():
if person_attribute in model_response:
if isinstance(person_attribute_value, dict):
for (sub_attribute,
sub_attribute_value) in person_attribute_value.items():
total_values += 1
if sub_attribute in model_response[
person_attribute] and model_response[
person_attribute][
sub_attribute] == sub_attribute_value:
positive_values += 1
else:
total_values += 1
if model_response[person_attribute] == person_attribute_value:
positive_values += 1
else:
# We count a missing sub-dict as a single missed value.
total_values += 1
# Return a score between 0 and 1
return positive_values / total_values
def generate(
llm: vllm.LLM,
inputs: tuple[str, SamplingParams, Optional[LoRARequest]],
):
prompts, sampling_param, lora_request = inputs
outputs = llm.generate(prompts, sampling_param, lora_request=lora_request)
return outputs[0].outputs[0].text.strip()
def batched_generate(
llm: vllm.LLM,
inputs: list[tuple[str, SamplingParams, Optional[LoRARequest]]],
):
for input in inputs:
prompt, sampling_param, lora_req = input
# Add requests to the engine and run the engine
llm._validate_and_add_requests(prompt,
sampling_param,
lora_request=lora_req,
prompt_adapter_request=None)
outputs = llm._run_engine(use_tqdm=True)
return [outputs[i].outputs[0].text.strip() for i in range(len(outputs))]
@pytest.fixture(scope="module")
def lora_llm(long_context_infos):
scaling_factors = [
context_len_to_scaling_factor[info["context_length"]]
for info in long_context_infos.values()
]
llm = vllm.LLM(
"meta-llama/Llama-2-13b-chat-hf",
enable_lora=True,
max_num_seqs=16,
max_loras=2,
long_lora_scaling_factors=tuple(scaling_factors),
max_num_batched_tokens=4096 * 8,
tensor_parallel_size=4,
# FIXME enable async output processor
disable_async_output_proc=True,
distributed_executor_backend="mp",
enable_chunked_prefill=True)
yield llm
del llm
def test_rotary_emb_replaced(dist_init):
"""Verify rotary emb in all the layers are replaced"""
from vllm.engine.arg_utils import EngineArgs
from vllm.worker.model_runner import ModelRunner
engine_args = EngineArgs("meta-llama/Llama-2-7b-hf",
long_lora_scaling_factors=(4.0, ),
enable_lora=True)
engine_config = engine_args.create_engine_config()
model_runner = ModelRunner(
vllm_config=engine_config,
is_driver_worker=True,
)
model_runner.load_model()
rotary_emb_count = 0
for module_name, module in model_runner.model.named_modules(
remove_duplicate=False):
if "rotary_emb" in module_name:
if "base_layer" not in module_name:
rotary_emb_count += 1
assert isinstance(module, LinearScalingRotaryEmbeddingWithLoRA)
else:
assert isinstance(module, LinearScalingRotaryEmbedding)
# Llama 2 has 32 layers.
assert rotary_emb_count == 32
@pytest.mark.skip_global_cleanup
def test_batched_rope_kernel(lora_llm, long_context_infos):
"""We test the batched kernel by comparing the results of batched an
non-batched generation.
"""
# Create non batched results first to compare against batched results
non_batched_results: list[str] = []
for lora_id, info in long_context_infos.items():
context_len = info["context_length"]
lora_prompt = (prompts_and_responses[context_len][0]["prompt"],
sampling_params,
_create_lora_request(lora_id, long_context_infos))
lora_output = generate(lora_llm, lora_prompt)
non_batched_results.append(lora_output)
# Create batched results
# Each element of the batch must be
# (prompt, prompt_sampling_params, prompt_lora_request)
batched_prompts: list[tuple[str, SamplingParams,
Optional[LoRARequest]]] = []
for lora_id, info in long_context_infos.items():
context_len = info["context_length"]
batched_prompts.extend([
(prompts_and_responses[context_len][0]["prompt"], sampling_params,
_create_lora_request(lora_id, long_context_infos))
])
batched_results = batched_generate(lora_llm, batched_prompts)
# Results should be the same
for non_batched, batched in zip(non_batched_results, batched_results):
assert non_batched == batched, (
"Non batched and batched results should be the "
f"same:\n{batched}\n{non_batched}")
@pytest.mark.skip_global_cleanup
def test_self_consistency(lora_llm, long_context_infos):
"""We test consistency of the batched kernel by permuting batched
inputs and comparing the results to the non-permuted batched results.
"""
num_loras = len(long_context_infos)
# Create results in order of long_context_infos
batched_prompts: list[tuple[str, SamplingParams,
Optional[LoRARequest]]] = []
for lora_id, info in long_context_infos.items():
context_len = info["context_length"]
batched_prompts.extend([
(prompts_and_responses[context_len][0]["prompt"], sampling_params,
_create_lora_request(lora_id, long_context_infos))
])
batched_results = batched_generate(lora_llm, batched_prompts)
permutation = np.random.default_rng(seed=42).permutation(num_loras)
# Create results in random order of permutation
batched_prompts = []
for i in permutation:
lora_id, info = list(long_context_infos.items())[i]
context_len = info["context_length"]
batched_prompts.extend([
(prompts_and_responses[context_len][0]["prompt"], sampling_params,
_create_lora_request(lora_id, long_context_infos))
])
permutated_batched_results = batched_generate(lora_llm, batched_prompts)
# Results should be the same
for i in range(num_loras):
assert batched_results[i] == permutated_batched_results[
permutation[i]], (
f"Results should be the same:\n{batched_results[i]}"
f"\n{permutated_batched_results[permutation[i]]}")
@pytest.mark.skip_global_cleanup
def test_quality(lora_llm, long_context_infos):
"""We test the quality of the answers given by the LoRA model by
comparing the generated text to the merged model's outputs.
This is effectively a mini-benchmark over four prompts.
If this test fails, this indicates that the quality of the LoRA model
is suboptimal compared to the merged model. For example, if the model
does not output valid dictionaries, this test will fail.
If needed for testing, the merged versions of the models are available
as part of the `conftest`.
The test is expected to run for about 1 minute on a p4de.24xlarge
instance.
"""
scores: list[float] = []
for lora_id, info in long_context_infos.items():
context_len = info["context_length"]
for prompt_and_response in prompts_and_responses[context_len]:
lora_prompt = (prompt_and_response["prompt"], sampling_params,
_create_lora_request(lora_id, long_context_infos))
response = generate(lora_llm, lora_prompt)
golden_answer = prompt_and_response["golden_answer"]
score = evaluate_json_response(response, golden_answer)
scores.append(score)
assert score > 0.3, ("Quality of the answer is not good enough. "
f"Expected {golden_answer}, got {response}")
assert np.mean(scores) > 0.5
@pytest.mark.skip_global_cleanup
def test_max_len(lora_llm, long_context_infos):
"""Test that we raise an ValueError when the input of a given LoRA
model exceeds the maximum length."""
# Since each LoRA model has a different maximum length, we need to
# test each one separately
for lora_id, info in long_context_infos.items():
context_len = info["context_length"]
lora_request = _create_lora_request(lora_id, long_context_infos)
# Good prompt should be fine
good_prompt = prompts_and_responses[context_len][0]["prompt"]
generate(lora_llm, (good_prompt, sampling_params, lora_request))
# Bad prompt should raise an error
bad_prompt = good_prompt * 2
with pytest.raises(ValueError):
generate(lora_llm, (bad_prompt, sampling_params, lora_request))
# Also test batched
batched_prompts: list[tuple[str, SamplingParams,
Optional[LoRARequest]]] = []
for lora_id_with_bad_inputs in long_context_infos:
for lora_id, info in long_context_infos.items():
context_len = info["context_length"]
batched_prompts.extend([
(prompts_and_responses[context_len][0]["prompt"] *
(2 if lora_id == lora_id_with_bad_inputs else 1),
sampling_params,
_create_lora_request(lora_id, long_context_infos))
])
# Turn good prompt into bad prompt inside of batched prompts
with pytest.raises(ValueError):
batched_generate(lora_llm, batched_prompts)