[Kernel/Model] Migrate mamba_ssm and causal_conv1d kernels to vLLM (#7651)

This commit is contained in:
Mor Zusman 2024-08-29 01:06:52 +03:00 committed by GitHub
parent 8c56e57def
commit fdd9daafa3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
20 changed files with 2815 additions and 31 deletions

View File

@ -203,6 +203,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
FetchContent_MakeAvailable(cutlass)
list(APPEND VLLM_EXT_SRC
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"

View File

@ -42,9 +42,6 @@ COPY requirements-cuda.txt requirements-cuda.txt
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-cuda.txt
COPY requirements-mamba.txt requirements-mamba.txt
RUN python3 -m pip install packaging
RUN python3 -m pip install -r requirements-mamba.txt
# cuda arch list used by torch
# can be useful for both `dev` and `test`
@ -127,22 +124,6 @@ RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m pip install -r requirements-dev.txt
#################### DEV IMAGE ####################
#################### MAMBA Build IMAGE ####################
FROM dev as mamba-builder
# max jobs used for build
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
WORKDIR /usr/src/mamba
COPY requirements-mamba.txt requirements-mamba.txt
# Download the wheel or build it if a pre-compiled release doesn't exist
RUN pip --verbose wheel -r requirements-mamba.txt \
--no-build-isolation --no-deps --no-cache-dir
#################### MAMBA Build IMAGE ####################
#################### vLLM installation IMAGE ####################
# image with vLLM installed
FROM nvidia/cuda:${CUDA_VERSION}-base-ubuntu20.04 AS vllm-base
@ -179,10 +160,6 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install dist/*.whl --verbose
RUN --mount=type=bind,from=mamba-builder,src=/usr/src/mamba,target=/usr/src/mamba \
--mount=type=cache,target=/root/.cache/pip \
python3 -m pip install /usr/src/mamba/*.whl --no-cache-dir
RUN --mount=type=cache,target=/root/.cache/pip \
. /etc/environment && \
python3 -m pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.1.4/flashinfer-0.1.4+cu121torch2.4-cp${PYTHON_VERSION_STR}-cp${PYTHON_VERSION_STR}-linux_x86_64.whl

View File

@ -0,0 +1,700 @@
// clang-format off
// adapted from https://github.com/Dao-AILab/causal-conv1d/blob/main/csrc/causal_conv1d_fwd.cu
// and https://github.com/Dao-AILab/causal-conv1d/blob/main/csrc/causal_conv1d_update.cu
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "causal_conv1d.h"
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
#include <cub/block/block_load.cuh>
#include <cub/block/block_store.cuh>
#include "static_switch.h"
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
if (ITYPE == at::ScalarType::Half) { \
using input_t = at::Half; \
using weight_t = at::Half; \
__VA_ARGS__(); \
} else if (ITYPE == at::ScalarType::BFloat16) { \
using input_t = at::BFloat16; \
using weight_t = at::BFloat16; \
__VA_ARGS__(); \
} else if (ITYPE == at::ScalarType::Float) { \
using input_t = float; \
using weight_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
}
template<typename input_t, typename weight_t>
void causal_conv1d_fwd_cuda(ConvParamsBase &params, cudaStream_t stream);
template <typename input_t, typename weight_t>
void causal_conv1d_channellast_fwd_cuda(ConvParamsBase &params, cudaStream_t stream);
template<typename input_t, typename weight_t>
void causal_conv1d_update_cuda(ConvParamsBase &params, cudaStream_t stream);
void set_conv_params_fwd(ConvParamsBase &params,
// sizes
const size_t batch,
const size_t dim,
const size_t seqlen,
const size_t width,
// device pointers
const at::Tensor x,
const at::Tensor weight,
const at::Tensor out,
void* bias_ptr,
bool silu_activation) {
// Reset the parameters
memset(&params, 0, sizeof(params));
params.batch = batch;
params.dim = dim;
params.seqlen = seqlen;
params.width = width;
params.silu_activation = silu_activation;
// Set the pointers and strides.
params.x_ptr = x.data_ptr();
params.weight_ptr = weight.data_ptr();
params.bias_ptr = bias_ptr;
params.out_ptr = out.data_ptr();
// All stride are in elements, not bytes.
params.x_batch_stride = x.stride(0);
params.x_c_stride = x.stride(1);
params.x_l_stride = x.stride(-1);
params.weight_c_stride = weight.stride(0);
params.weight_width_stride = weight.stride(1);
params.out_batch_stride = out.stride(0);
params.out_c_stride = out.stride(1);
params.out_l_stride = out.stride(-1);
}
at::Tensor
causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
const c10::optional<at::Tensor> &bias_,
const c10::optional<at::Tensor> &seq_idx_,
const c10::optional<at::Tensor> &initial_states_,
const c10::optional<at::Tensor> &final_states_out_,
bool silu_activation) {
auto input_type = x.scalar_type();
auto weight_type = weight.scalar_type();
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
TORCH_CHECK(x.is_cuda());
TORCH_CHECK(weight.is_cuda());
const auto sizes = x.sizes();
const int batch_size = sizes[0];
const int dim = sizes[1];
const int seqlen = sizes[2];
const int width = weight.size(-1);
CHECK_SHAPE(x, batch_size, dim, seqlen);
CHECK_SHAPE(weight, dim, width);
TORCH_CHECK(x.stride(2) == 1 || x.stride(1) == 1);
const bool is_channel_last = x.stride(1) == 1 && x.stride(2) > 1;
if (is_channel_last) {
TORCH_CHECK(dim % 8 == 0, "causal_conv1d only supports channel dimension divisible by 8 for now");
TORCH_CHECK(x.stride(2) % 8 == 0 and x.stride(0) % 8 == 0, "causal_conv1d with channel last layout requires strides (x.stride(0) and x.stride(2)) to be multiples of 8");
}
TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
if (bias_.has_value()) {
auto bias = bias_.value();
TORCH_CHECK(bias.scalar_type() == weight_type);
TORCH_CHECK(bias.is_cuda());
TORCH_CHECK(bias.stride(-1) == 1);
CHECK_SHAPE(bias, dim);
}
if (seq_idx_.has_value()) {
TORCH_CHECK(is_channel_last, "seq_idx is only supported for channel last layout");
auto seq_idx = seq_idx_.value();
TORCH_CHECK(seq_idx.scalar_type() == torch::kInt32);
TORCH_CHECK(seq_idx.is_cuda());
TORCH_CHECK(seq_idx.is_contiguous());
CHECK_SHAPE(seq_idx, batch_size, seqlen);
}
at::Tensor out = torch::empty_like(x);
ConvParamsBase params;
set_conv_params_fwd(params, batch_size, dim, seqlen, width, x, weight, out,
bias_.has_value() ? bias_.value().data_ptr() : nullptr,
silu_activation);
if (seq_idx_.has_value()) {
params.seq_idx_ptr = seq_idx_.value().data_ptr();
} else {
params.seq_idx_ptr = nullptr;
}
if (initial_states_.has_value()) {
TORCH_CHECK(is_channel_last, "initial_states is only supported for channel last layout");
auto initial_states = initial_states_.value();
TORCH_CHECK(initial_states.scalar_type() == input_type);
TORCH_CHECK(initial_states.is_cuda());
CHECK_SHAPE(initial_states, batch_size, dim, width - 1);
TORCH_CHECK(initial_states.stride(1) == 1);
params.initial_states_ptr = initial_states.data_ptr();
params.initial_states_batch_stride = initial_states.stride(0);
params.initial_states_c_stride = initial_states.stride(1);
params.initial_states_l_stride = initial_states.stride(2);
} else {
params.initial_states_ptr = nullptr;
}
if (final_states_out_.has_value()) {
TORCH_CHECK(is_channel_last, "final_states is only supported for channel last layout");
auto final_states = final_states_out_.value();
TORCH_CHECK(final_states.scalar_type() == input_type);
TORCH_CHECK(final_states.is_cuda());
CHECK_SHAPE(final_states, batch_size, dim, width - 1);
TORCH_CHECK(final_states.stride(1) == 1);
params.final_states_ptr = final_states.data_ptr();
params.final_states_batch_stride = final_states.stride(0);
params.final_states_c_stride = final_states.stride(1);
params.final_states_l_stride = final_states.stride(2);
} else {
params.final_states_ptr = nullptr;
}
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)x.get_device()};
auto stream = at::cuda::getCurrentCUDAStream().stream();
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_fwd", [&] {
if (!is_channel_last) {
causal_conv1d_fwd_cuda<input_t, weight_t>(params, stream);
} else {
causal_conv1d_channellast_fwd_cuda<input_t, weight_t>(params, stream);
}
});
return out;
}
at::Tensor
causal_conv1d_update(const at::Tensor &x,
const at::Tensor &conv_state,
const at::Tensor &weight,
const c10::optional<at::Tensor> &bias_,
bool silu_activation) {
auto input_type = x.scalar_type();
auto weight_type = weight.scalar_type();
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
TORCH_CHECK(weight_type == input_type, "weight type must equal to input type, other variations are disabled due to binary size limitations");
TORCH_CHECK(conv_state.scalar_type() == input_type);
TORCH_CHECK(x.is_cuda());
TORCH_CHECK(conv_state.is_cuda());
TORCH_CHECK(weight.is_cuda());
const auto sizes = x.sizes();
const int batch_size = sizes[0];
const int dim = sizes[1];
const int width = weight.size(-1);
CHECK_SHAPE(x, batch_size, dim);
CHECK_SHAPE(conv_state, batch_size, dim, width);
CHECK_SHAPE(weight, dim, width);
TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
if (bias_.has_value()) {
auto bias = bias_.value();
TORCH_CHECK(bias.scalar_type() == weight_type);
TORCH_CHECK(bias.is_cuda());
TORCH_CHECK(bias.stride(-1) == 1);
CHECK_SHAPE(bias, dim);
}
at::Tensor out = torch::empty_like(x);
ConvParamsBase params;
set_conv_params_fwd(params, batch_size, dim, /*seqlen=*/1, width, x, weight, out,
bias_.has_value() ? bias_.value().data_ptr() : nullptr,
silu_activation);
params.conv_state_ptr = conv_state.data_ptr();
// All stride are in elements, not bytes.
params.conv_state_batch_stride = conv_state.stride(0);
params.conv_state_c_stride = conv_state.stride(1);
params.conv_state_l_stride = conv_state.stride(2);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)x.get_device()};
auto stream = at::cuda::getCurrentCUDAStream().stream();
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_update", [&] {
causal_conv1d_update_cuda<input_t, weight_t>(params, stream);
});
return out;
}
template<int kNThreads_, int kWidth_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
struct Causal_conv1d_fwd_kernel_traits {
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
static constexpr int kWidth = kWidth_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
static_assert(kWidth <= kNElts);
static constexpr bool kIsVecLoad = kIsVecLoad_;
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>;
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>;
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>;
static constexpr int kSmemIOSize = kIsVecLoad
? 0
: custom_max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)});
static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts;
static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize;
};
template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads)
void causal_conv1d_fwd_kernel(ConvParamsBase params) {
constexpr int kWidth = Ktraits::kWidth;
constexpr int kNThreads = Ktraits::kNThreads;
constexpr int kNElts = Ktraits::kNElts;
static constexpr bool kIsVecLoad = Ktraits::kIsVecLoad;
using input_t = typename Ktraits::input_t;
using vec_t = typename Ktraits::vec_t;
using weight_t = typename Ktraits::weight_t;
// Shared memory.
extern __shared__ char smem_[];
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_);
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_);
vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize);
const int tidx = threadIdx.x;
const int batch_id = blockIdx.x;
const int channel_id = blockIdx.y;
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
+ channel_id * params.x_c_stride;
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
+ channel_id * params.out_c_stride;
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
// Thread 0 will load the last elements of the previous chunk, so we initialize those to 0.
if (tidx == 0) {
input_t zeros[kNElts] = {0};
smem_exchange[kNThreads - 1] = reinterpret_cast<vec_t *>(zeros)[0];
}
float weight_vals[kWidth];
#pragma unroll
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
constexpr int kChunkSize = kNThreads * kNElts;
const int n_chunks = (params.seqlen + kChunkSize - 1) / kChunkSize;
for (int chunk = 0; chunk < n_chunks; ++chunk) {
input_t x_vals_load[2 * kNElts] = {0};
if constexpr(kIsVecLoad) {
typename Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (params.seqlen - chunk * kChunkSize) / kNElts);
} else {
__syncthreads();
typename Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), params.seqlen - chunk * kChunkSize);
}
x += kChunkSize;
__syncthreads();
// Thread kNThreads - 1 don't write yet, so that thread 0 can read
// the last elements of the previous chunk.
if (tidx < kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
__syncthreads();
reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[tidx > 0 ? tidx - 1 : kNThreads - 1];
__syncthreads();
// Now thread kNThreads - 1 can write the last elements of the current chunk.
if (tidx == kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
float x_vals[2 * kNElts];
#pragma unroll
for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); }
float out_vals[kNElts];
#pragma unroll
for (int i = 0; i < kNElts; ++i) {
out_vals[i] = bias_val;
#pragma unroll
for (int w = 0; w < kWidth; ++w) {
out_vals[i] += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)];
}
}
if (params.silu_activation) {
#pragma unroll
for (int i = 0; i < kNElts; ++i) {
out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i]));
}
}
input_t out_vals_store[kNElts];
#pragma unroll
for (int i = 0; i < kNElts; ++i) { out_vals_store[i] = out_vals[i]; }
if constexpr(kIsVecLoad) {
typename Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(out), reinterpret_cast<vec_t (&)[1]>(out_vals_store), (params.seqlen - chunk * kChunkSize) / kNElts);
} else {
typename Ktraits::BlockStoreT(smem_store).Store(out, out_vals_store, params.seqlen - chunk * kChunkSize);
}
out += kChunkSize;
}
}
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
void causal_conv1d_fwd_launch(ConvParamsBase &params, cudaStream_t stream) {
static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8;
BOOL_SWITCH(params.seqlen % kNElts == 0, kIsVecLoad, [&] {
using Ktraits = Causal_conv1d_fwd_kernel_traits<kNThreads, kWidth, kIsVecLoad, input_t, weight_t>;
constexpr int kSmemSize = Ktraits::kSmemSize;
dim3 grid(params.batch, params.dim);
auto kernel = &causal_conv1d_fwd_kernel<Ktraits>;
if (kSmemSize >= 48 * 1024) {
#ifndef USE_ROCM
C10_CUDA_CHECK(cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
#else
// There is a slight signature discrepancy in HIP and CUDA "FuncSetAttribute" function.
C10_CUDA_CHECK(cudaFuncSetAttribute(
(void *) kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
std::cerr << "Warning (causal_conv1d fwd launch): attempting to set maxDynamicSharedMemorySize on an AMD GPU which is currently a non-op (in ROCm versions <= 6.1). This might lead to undefined behavior. \n" << std::endl;
#endif
}
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
}
template<typename input_t, typename weight_t>
void causal_conv1d_fwd_cuda(ConvParamsBase &params, cudaStream_t stream) {
if (params.width == 2) {
causal_conv1d_fwd_launch<128, 2, input_t, weight_t>(params, stream);
} else if (params.width == 3) {
causal_conv1d_fwd_launch<128, 3, input_t, weight_t>(params, stream);
} else if (params.width == 4) {
causal_conv1d_fwd_launch<128, 4, input_t, weight_t>(params, stream);
}
}
template<int kNThreads_, int kWidth_, int kChunkSizeL_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
struct Causal_conv1d_channellast_fwd_kernel_traits {
// The cache line is 128 bytes, and we try to read 16 bytes per thread.
// So we have 8 threads per "row", so 32 or 64 elements in the channel dimension.
// That leaves 4 columns per warp, and so 16 columns per block (assuming each block has 128
// threads). Each each load is 16 x 32|64 elements in the L x C dimensions.
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
static_assert(kNThreads % 32 == 0);
static constexpr int kNWarps = kNThreads / 32;
static constexpr int kWidth = kWidth_;
static constexpr int kChunkSizeL = kChunkSizeL_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
static constexpr int kNEltsPerRow = 128 / kNBytes;
static constexpr int kNThreadsPerRow = kNEltsPerRow / kNElts; // Always 8 for now
static_assert(kNThreadsPerRow * kNBytes * kNElts == 128);
static constexpr int kNColsPerWarp = 32 / kNThreadsPerRow; // Always 4 for now
static_assert(kNColsPerWarp * kNThreadsPerRow == 32);
static constexpr int kNColsPerLoad = kNColsPerWarp * kNWarps;
static constexpr int kNLoads = kChunkSizeL / kNColsPerLoad;
static_assert(kNLoads * kNColsPerLoad == kChunkSizeL);
static constexpr bool kIsVecLoad = kIsVecLoad_;
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
// using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
// using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
// static constexpr int kSmemSize = std::max({sizeof(typename BlockLoadT::TempStorage),
// sizeof(typename BlockStoreT::TempStorage)});
// static constexpr int kSmemSize = kChunkSizeL * kNEltsPerRow * kNBytes;
};
template<typename Ktraits, bool kHasSeqIdx>
__global__ __launch_bounds__(Ktraits::kNThreads)
void causal_conv1d_channellast_fwd_kernel(ConvParamsBase params) {
constexpr int kWidth = Ktraits::kWidth;
constexpr int kNThreads = Ktraits::kNThreads;
constexpr int kNElts = Ktraits::kNElts;
constexpr int kNThreadsPerC = Ktraits::kNThreadsPerRow;
constexpr int kLPerLoad = Ktraits::kNColsPerLoad;
constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
using input_t = typename Ktraits::input_t;
using vec_t = typename Ktraits::vec_t;
using weight_t = typename Ktraits::weight_t;
// Shared memory.
__shared__ input_t x_smem[kWidth - 1 + kChunkSizeL][kChunkSizeC + kNElts];
const int batch_id = blockIdx.x;
const int chunk_l_id = blockIdx.y;
const int chunk_c_id = blockIdx.z;
const int tid = threadIdx.x;
const int l_idx = tid / kNThreadsPerC;
const int c_idx = tid % kNThreadsPerC;
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
+ (chunk_l_id * kChunkSizeL + l_idx) * params.x_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr)
+ chunk_c_id * kChunkSizeC * params.weight_c_stride;
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
+ (chunk_l_id * kChunkSizeL + l_idx) * params.out_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
int *seq_idx = !kHasSeqIdx ? nullptr : reinterpret_cast<int *>(params.seq_idx_ptr)
+ batch_id * params.seqlen + chunk_l_id * kChunkSizeL;
input_t *initial_states = params.initial_states_ptr == nullptr || chunk_l_id > 0 ? nullptr
: reinterpret_cast<input_t *>(params.initial_states_ptr) + batch_id * params.initial_states_batch_stride + l_idx * params.initial_states_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
// The last L-chunk will also have enough info to write to final states, since it also contain a few x values
// from the previous L-chunk.
input_t *final_states = params.final_states_ptr == nullptr || chunk_l_id < gridDim.y - 1 ? nullptr
: reinterpret_cast<input_t *>(params.final_states_ptr) + batch_id * params.final_states_batch_stride + l_idx * params.final_states_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
#pragma unroll
for (int l = 0; l < Ktraits::kNLoads; ++l) {
input_t x_vals_load[kNElts] = {0};
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + l * kLPerLoad * params.x_l_stride);
}
reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
}
// Load the elements from the previous chunk that are needed for convolution.
if (l_idx < kWidth - 1) {
input_t x_vals_load[kNElts] = {0};
if (chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) >= 0
&& chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < params.seqlen
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x - (kWidth - 1) * params.x_l_stride);
} else if (initial_states != nullptr
&& chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < 0
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(initial_states);
}
reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
}
__syncthreads();
if (final_states != nullptr
&& l_idx < kWidth - 1
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
// x_smem[0] contains element at index chunk_l_id * kChunkSizeL - (kWidth - 1)
// So last few elements (index params.seqlen - kWidth + 1 + l_idx) are stored in x_smem[params.seqlen - kWidth + 1 + l_idx - (chunk_l_id * kChunkSizeL - kWidth + 1)][c_idx]
*reinterpret_cast<vec_t *>(final_states) = reinterpret_cast<vec_t *>(x_smem[params.seqlen + l_idx - chunk_l_id * kChunkSizeL])[c_idx];
}
constexpr int kLPerThread = constexpr_min(kChunkSizeL * kChunkSizeC / kNThreads, kChunkSizeL);
static_assert(kLPerThread * kNThreads == kChunkSizeL * kChunkSizeC);
constexpr int kNThreadsPerRow = kChunkSizeL / kLPerThread;
static_assert(kNThreadsPerRow * kLPerThread == kChunkSizeL);
// kChunkSizeL, kLPerThread, kNThreadsPerRow should be powers of 2 for simplicity
static_assert((kChunkSizeL & (kChunkSizeL - 1)) == 0);
static_assert((kLPerThread & (kLPerThread - 1)) == 0);
static_assert((kNThreadsPerRow & (kNThreadsPerRow - 1)) == 0);
static_assert(kNThreadsPerRow <= 32);
const int row_idx = tid / kNThreadsPerRow;
const int col_idx = tid % kNThreadsPerRow;
float bias_val = params.bias_ptr == nullptr || chunk_c_id * kChunkSizeC + row_idx >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[chunk_c_id * kChunkSizeC + row_idx]);
float weight_vals[kWidth] = {0};
if (chunk_c_id * kChunkSizeC + row_idx < params.dim) {
#pragma unroll
for (int w = 0; w < kWidth; ++w) {
weight_vals[w] = weight[row_idx * params.weight_c_stride + w * params.weight_width_stride];
}
}
float x_vals[kWidth - 1 + kLPerThread];
#pragma unroll
for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
}
int seq_idx_thread[kWidth - 1 + kLPerThread];
if constexpr (kHasSeqIdx) {
#pragma unroll
for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
seq_idx_thread[i] = chunk_l_id * kChunkSizeL + col_idx * kLPerThread + i - (kWidth - 1) >= 0 ? seq_idx[col_idx * kLPerThread + i - (kWidth - 1)] : -1;
}
}
float out_vals[kLPerThread];
#pragma unroll
for (int i = 0; i < kLPerThread; ++i) {
out_vals[i] = bias_val;
const int seq_idx_cur = !kHasSeqIdx ? 0 : seq_idx_thread[i + kWidth - 1];
#pragma unroll
for (int w = 0; w < kWidth; ++w) {
if constexpr (!kHasSeqIdx) {
out_vals[i] += weight_vals[w] * x_vals[i + w];
} else {
out_vals[i] += seq_idx_thread[i + w] == seq_idx_cur ? weight_vals[w] * x_vals[i + w] : 0.f;
}
}
if (params.silu_activation) {out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i])); }
}
__syncthreads();
#pragma unroll
for (int i = 0; i < kLPerThread; ++i) { x_smem[col_idx * kLPerThread + i][row_idx] = out_vals[i]; }
__syncthreads();
#pragma unroll
for (int l = 0; l < Ktraits::kNLoads; ++l) {
input_t out_vals_store[kNElts];
reinterpret_cast<vec_t *>(out_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[l * kLPerLoad + l_idx])[c_idx];
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
*reinterpret_cast<vec_t *>(out + l * kLPerLoad * params.out_l_stride) = reinterpret_cast<vec_t *>(out_vals_store)[0];
}
}
}
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
void causal_conv1d_channellast_fwd_launch(ConvParamsBase &params, cudaStream_t stream) {
BOOL_SWITCH(params.seq_idx_ptr != nullptr, kHasSeqIdx, [&] {
using Ktraits = Causal_conv1d_channellast_fwd_kernel_traits<kNThreads, kWidth, 64, true, input_t, weight_t>;
// constexpr int kSmemSize = Ktraits::kSmemSize;
constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
const int n_chunks_L = (params.seqlen + kChunkSizeL - 1) / kChunkSizeL;
const int n_chunks_C = (params.dim + kChunkSizeC - 1) / kChunkSizeC;
dim3 grid(params.batch, n_chunks_L, n_chunks_C);
dim3 block(Ktraits::kNThreads);
auto kernel = &causal_conv1d_channellast_fwd_kernel<Ktraits, kHasSeqIdx>;
// if (kSmemSize >= 48 * 1024) {
// C10_CUDA_CHECK(cudaFuncSetAttribute(
// kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
// }
// kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
}
template<typename input_t, typename weight_t>
void causal_conv1d_channellast_fwd_cuda(ConvParamsBase &params, cudaStream_t stream) {
if (params.width == 2) {
causal_conv1d_channellast_fwd_launch<128, 2, input_t, weight_t>(params, stream);
} else if (params.width == 3) {
causal_conv1d_channellast_fwd_launch<128, 3, input_t, weight_t>(params, stream);
} else if (params.width == 4) {
causal_conv1d_channellast_fwd_launch<128, 4, input_t, weight_t>(params, stream);
}
}
template void causal_conv1d_fwd_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
///////
template<int kNThreads_, int kWidth_, typename input_t_, typename weight_t_>
struct Causal_conv1d_update_kernel_traits {
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
static constexpr int kWidth = kWidth_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
};
template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads)
void causal_conv1d_update_kernel(ConvParamsBase params) {
constexpr int kWidth = Ktraits::kWidth;
constexpr int kNThreads = Ktraits::kNThreads;
using input_t = typename Ktraits::input_t;
using weight_t = typename Ktraits::weight_t;
const int tidx = threadIdx.x;
const int batch_id = blockIdx.x;
const int channel_id = blockIdx.y * kNThreads + tidx;
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
+ channel_id * params.x_c_stride;
input_t *conv_state = reinterpret_cast<input_t *>(params.conv_state_ptr) + batch_id * params.conv_state_batch_stride
+ channel_id * params.conv_state_c_stride;
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
+ channel_id * params.out_c_stride;
float bias_val = params.bias_ptr == nullptr || channel_id >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
float weight_vals[kWidth] = {0};
if (channel_id < params.dim) {
#pragma unroll
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
}
float x_vals[kWidth] = {0};
if (channel_id < params.dim) {
#pragma unroll
for (int i = 0; i < kWidth - 1; ++i) { x_vals[i] = float(conv_state[(i + 1) * params.conv_state_l_stride]); }
x_vals[kWidth - 1] = float(x[0]);
#pragma unroll
for (int i = 0; i < kWidth; ++i) { conv_state[i * params.conv_state_l_stride] = input_t(x_vals[i]); }
}
float out_val = bias_val;
#pragma unroll
for (int i = 0; i < kWidth; ++i) { out_val += weight_vals[i] * x_vals[i]; }
if (params.silu_activation) { out_val = out_val / (1 + expf(-out_val)); }
if (channel_id < params.dim) { out[0] = input_t(out_val); }
}
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
void causal_conv1d_update_launch(ConvParamsBase &params, cudaStream_t stream) {
using Ktraits = Causal_conv1d_update_kernel_traits<kNThreads, kWidth, input_t, weight_t>;
dim3 grid(params.batch, (params.dim + kNThreads - 1) / kNThreads);
auto kernel = &causal_conv1d_update_kernel<Ktraits>;
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template<typename input_t, typename weight_t>
void causal_conv1d_update_cuda(ConvParamsBase &params, cudaStream_t stream) {
if (params.width == 2) {
causal_conv1d_update_launch<64, 2, input_t, weight_t>(params, stream);
} else if (params.width == 3) {
causal_conv1d_update_launch<64, 3, input_t, weight_t>(params, stream);
} else if (params.width == 4) {
causal_conv1d_update_launch<64, 4, input_t, weight_t>(params, stream);
}
}
template void causal_conv1d_update_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_update_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_update_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);

View File

@ -0,0 +1,144 @@
/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
// clang-format off
// adapted from https://github.com/Dao-AILab/causal-conv1d/blob/main/csrc/causal_conv1d.h
#pragma once
#include <cuda_bf16.h>
#include <cuda_fp16.h>
////////////////////////////////////////////////////////////////////////////////////////////////////
struct ConvParamsBase {
using index_t = uint32_t;
int batch, dim, seqlen, width;
bool silu_activation;
index_t x_batch_stride;
index_t x_c_stride;
index_t x_l_stride;
index_t weight_c_stride;
index_t weight_width_stride;
index_t out_batch_stride;
index_t out_c_stride;
index_t out_l_stride;
index_t conv_state_batch_stride;
index_t conv_state_c_stride;
index_t conv_state_l_stride;
// Common data pointers.
void *__restrict__ x_ptr;
void *__restrict__ weight_ptr;
void *__restrict__ bias_ptr;
void *__restrict__ out_ptr;
void *__restrict__ conv_state_ptr;
void *__restrict__ seq_idx_ptr;
// No __restrict__ since initial_states could be the same as final_states.
void * initial_states_ptr;
index_t initial_states_batch_stride;
index_t initial_states_l_stride;
index_t initial_states_c_stride;
void * final_states_ptr;
index_t final_states_batch_stride;
index_t final_states_l_stride;
index_t final_states_c_stride;
};
#ifndef USE_ROCM
#include <cuda_bf16.h>
template<typename T>
__device__ inline T shuffle_xor(T val, int offset) {
return __shfl_xor_sync(uint32_t(-1), val, offset);
}
constexpr size_t custom_max(std::initializer_list<size_t> ilist)
{
return std::max(ilist);
}
template<typename T>
constexpr T constexpr_min(T a, T b) {
return std::min(a, b);
}
#else
#include <hip/hip_bf16.h>
template<typename T>
__device__ inline T shuffle_xor(T val, int offset) {
return __shfl_xor(val, offset);
}
constexpr size_t custom_max(std::initializer_list<size_t> ilist)
{
return *std::max_element(ilist.begin(), ilist.end());
}
template<typename T>
constexpr T constexpr_min(T a, T b) {
return a < b ? a : b;
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int BYTES> struct BytesToType {};
template<> struct BytesToType<16> {
using Type = uint4;
static_assert(sizeof(Type) == 16);
};
template<> struct BytesToType<8> {
using Type = uint64_t;
static_assert(sizeof(Type) == 8);
};
template<> struct BytesToType<4> {
using Type = uint32_t;
static_assert(sizeof(Type) == 4);
};
template<> struct BytesToType<2> {
using Type = uint16_t;
static_assert(sizeof(Type) == 2);
};
template<> struct BytesToType<1> {
using Type = uint8_t;
static_assert(sizeof(Type) == 1);
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
struct SumOp {
__device__ inline T operator()(T const & x, T const & y) { return x + y; }
};
template<int THREADS>
struct Allreduce {
static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
template<typename T, typename Operator>
static __device__ inline T run(T x, Operator &op) {
constexpr int OFFSET = THREADS / 2;
x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
return Allreduce<OFFSET>::run(x, op);
}
};
template<>
struct Allreduce<2> {
template<typename T, typename Operator>
static __device__ inline T run(T x, Operator &op) {
x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
return x;
}
};

View File

@ -0,0 +1,28 @@
// Inspired by
// https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
// and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
// clang-format off
// adapted from https://github.com/Dao-AILab/causal-conv1d/blob/main/csrc/static_switch.h
#pragma once
/// @param COND - a boolean expression to switch by
/// @param CONST_NAME - a name given for the constexpr bool variable.
/// @param ... - code to execute for true and false
///
/// Usage:
/// ```
/// BOOL_SWITCH(flag, BoolConst, [&] {
/// some_function<BoolConst>(...);
/// });
/// ```
#define BOOL_SWITCH(COND, CONST_NAME, ...) \
[&] { \
if (COND) { \
static constexpr bool CONST_NAME = true; \
return __VA_ARGS__(); \
} else { \
static constexpr bool CONST_NAME = false; \
return __VA_ARGS__(); \
} \
}()

View File

@ -0,0 +1,276 @@
/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
// clang-format off
// adapted from https://github.com/state-spaces/mamba/blob/main/csrc/selective_scan/selective_scan.h
#pragma once
#ifndef USE_ROCM
#include <cuda_bf16.h>
#else
#include <hip/hip_bf16.h>
#endif
#include <cuda_fp16.h>
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SSMParamsBase {
using index_t = uint32_t;
int batch, dim, seqlen, dstate, n_groups, n_chunks;
int dim_ngroups_ratio;
bool is_variable_B;
bool is_variable_C;
bool delta_softplus;
index_t A_d_stride;
index_t A_dstate_stride;
index_t B_batch_stride;
index_t B_d_stride;
index_t B_dstate_stride;
index_t B_group_stride;
index_t C_batch_stride;
index_t C_d_stride;
index_t C_dstate_stride;
index_t C_group_stride;
index_t u_batch_stride;
index_t u_d_stride;
index_t delta_batch_stride;
index_t delta_d_stride;
index_t z_batch_stride;
index_t z_d_stride;
index_t out_batch_stride;
index_t out_d_stride;
index_t out_z_batch_stride;
index_t out_z_d_stride;
// Common data pointers.
void *__restrict__ A_ptr;
void *__restrict__ B_ptr;
void *__restrict__ C_ptr;
void *__restrict__ D_ptr;
void *__restrict__ u_ptr;
void *__restrict__ delta_ptr;
void *__restrict__ delta_bias_ptr;
void *__restrict__ out_ptr;
void *__restrict__ x_ptr;
void *__restrict__ z_ptr;
void *__restrict__ out_z_ptr;
void *__restrict__ index_ptr;
};
#ifndef USE_ROCM
constexpr size_t custom_max(std::initializer_list<size_t> ilist)
{
return std::max(ilist);
}
template<typename T>
constexpr T constexpr_min(T a, T b) {
return std::min(a, b);
}
#else
constexpr size_t custom_max(std::initializer_list<size_t> ilist)
{
return *std::max_element(ilist.begin(), ilist.end());
}
template<typename T>
constexpr T constexpr_min(T a, T b) {
return a < b ? a : b;
}
#endif
#define MAX_DSTATE 256
inline __device__ float2 operator+(const float2 & a, const float2 & b){
return {a.x + b.x, a.y + b.y};
}
inline __device__ float3 operator+(const float3 &a, const float3 &b) {
return {a.x + b.x, a.y + b.y, a.z + b.z};
}
inline __device__ float4 operator+(const float4 & a, const float4 & b){
return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w};
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int BYTES> struct BytesToType {};
template<> struct BytesToType<16> {
using Type = uint4;
static_assert(sizeof(Type) == 16);
};
template<> struct BytesToType<8> {
using Type = uint64_t;
static_assert(sizeof(Type) == 8);
};
template<> struct BytesToType<4> {
using Type = uint32_t;
static_assert(sizeof(Type) == 4);
};
template<> struct BytesToType<2> {
using Type = uint16_t;
static_assert(sizeof(Type) == 2);
};
template<> struct BytesToType<1> {
using Type = uint8_t;
static_assert(sizeof(Type) == 1);
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename scalar_t, int N>
struct Converter{
static inline __device__ void to_float(const scalar_t (&src)[N], float (&dst)[N]) {
#pragma unroll
for (int i = 0; i < N; ++i) { dst[i] = src[i]; }
}
};
template<int N>
struct Converter<at::Half, N>{
static inline __device__ void to_float(const at::Half (&src)[N], float (&dst)[N]) {
static_assert(N % 2 == 0);
auto &src2 = reinterpret_cast<const half2 (&)[N / 2]>(src);
auto &dst2 = reinterpret_cast<float2 (&)[N / 2]>(dst);
#pragma unroll
for (int i = 0; i < N / 2; ++i) { dst2[i] = __half22float2(src2[i]); }
}
};
#if __CUDA_ARCH__ >= 800
template<int N>
struct Converter<at::BFloat16, N>{
static inline __device__ void to_float(const at::BFloat16 (&src)[N], float (&dst)[N]) {
static_assert(N % 2 == 0);
auto &src2 = reinterpret_cast<const nv_bfloat162 (&)[N / 2]>(src);
auto &dst2 = reinterpret_cast<float2 (&)[N / 2]>(dst);
#pragma unroll
for (int i = 0; i < N / 2; ++i) { dst2[i] = __bfloat1622float2(src2[i]); }
}
};
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename scalar_t> struct SSMScanOp;
template<>
struct SSMScanOp<float> {
__device__ __forceinline__ float2 operator()(const float2 &ab0, const float2 &ab1) const {
return make_float2(ab1.x * ab0.x, ab1.x * ab0.y + ab1.y);
}
};
// A stateful callback functor that maintains a running prefix to be applied
// during consecutive scan operations.
template <typename scalar_t> struct SSMScanPrefixCallbackOp {
using scan_t = std::conditional_t<std::is_same_v<scalar_t, float>, float2, float4>;
scan_t running_prefix;
// Constructor
__device__ SSMScanPrefixCallbackOp(scan_t running_prefix_) : running_prefix(running_prefix_) {}
// Callback operator to be entered by the first warp of threads in the block.
// Thread-0 is responsible for returning a value for seeding the block-wide scan.
__device__ scan_t operator()(scan_t block_aggregate) {
scan_t old_prefix = running_prefix;
running_prefix = SSMScanOp<scalar_t>()(running_prefix, block_aggregate);
return old_prefix;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Ktraits>
inline __device__ void load_input(typename Ktraits::input_t *u,
typename Ktraits::input_t (&u_vals)[Ktraits::kNItems],
typename Ktraits::BlockLoadT::TempStorage &smem_load,
int seqlen) {
if constexpr (Ktraits::kIsEvenLen) {
auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_load);
using vec_t = typename Ktraits::vec_t;
typename Ktraits::BlockLoadVecT(smem_load_vec).Load(
reinterpret_cast<vec_t*>(u),
reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(u_vals)
#ifdef USE_ROCM
, Ktraits::kNThreads * Ktraits::kNLoads
#endif
);
} else {
typename Ktraits::BlockLoadT(smem_load).Load(u, u_vals, seqlen, 0.f);
}
}
template<typename Ktraits>
inline __device__ void load_index(int *u,
int (&u_vals)[Ktraits::kNItems],
typename Ktraits::BlockLoadIndexT::TempStorage &smem_load_index,
int seqlen) {
if constexpr (Ktraits::kIsEvenLen) {
auto& smem_load_index_vec = reinterpret_cast<typename Ktraits::BlockLoadIndexVecT::TempStorage&>(smem_load_index);
Ktraits::BlockLoadIndexVecT(smem_load_index_vec).Load(
reinterpret_cast<uint4*>(u),
reinterpret_cast<uint4(&)[Ktraits::kNLoadsIndex]>(u_vals)
);
} else {
Ktraits::BlockLoadIndexT(smem_load_index).Load(u, u_vals, seqlen, 0);
}
}
template<typename Ktraits>
inline __device__ void load_weight(typename Ktraits::input_t *Bvar,
typename Ktraits::weight_t (&B_vals)[Ktraits::kNItems],
typename Ktraits::BlockLoadWeightT::TempStorage &smem_load_weight,
int seqlen) {
constexpr int kNItems = Ktraits::kNItems;
typename Ktraits::input_t B_vals_load[kNItems];
if constexpr (Ktraits::kIsEvenLen) {
auto& smem_load_weight_vec = reinterpret_cast<typename Ktraits::BlockLoadWeightVecT::TempStorage&>(smem_load_weight);
using vec_t = typename Ktraits::vec_t;
typename Ktraits::BlockLoadWeightVecT(smem_load_weight_vec).Load(
reinterpret_cast<vec_t*>(Bvar),
reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(B_vals_load)
);
} else {
typename Ktraits::BlockLoadWeightT(smem_load_weight).Load(Bvar, B_vals_load, seqlen, 0.f);
}
// #pragma unroll
// for (int i = 0; i < kNItems; ++i) { B_vals[i] = B_vals_load[i]; }
Converter<typename Ktraits::input_t, kNItems>::to_float(B_vals_load, B_vals);
}
template<typename Ktraits>
inline __device__ void store_output(typename Ktraits::input_t *out,
const float (&out_vals)[Ktraits::kNItems],
typename Ktraits::BlockStoreT::TempStorage &smem_store,
int seqlen) {
typename Ktraits::input_t write_vals[Ktraits::kNItems];
#pragma unroll
for (int i = 0; i < Ktraits::kNItems; ++i) { write_vals[i] = out_vals[i]; }
if constexpr (Ktraits::kIsEvenLen) {
auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_store);
using vec_t = typename Ktraits::vec_t;
typename Ktraits::BlockStoreVecT(smem_store_vec).Store(
reinterpret_cast<vec_t*>(out),
reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(write_vals)
);
} else {
typename Ktraits::BlockStoreT(smem_store).Store(out, write_vals, seqlen);
}
}

View File

@ -0,0 +1,593 @@
// clang-format off
// adapted from https://github.com/state-spaces/mamba/blob/main/csrc/selective_scan/selective_scan_fwd_kernel.cuh
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "selective_scan.h"
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
#ifndef USE_ROCM
#include <cub/block/block_load.cuh>
#include <cub/block/block_store.cuh>
#include <cub/block/block_scan.cuh>
#else
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#include "selective_scan.h"
#include "static_switch.h"
template<int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_,
bool kIsVariableB_, bool kIsVariableC_,
bool kHasZ_, bool kUseIndex_, typename input_t_, typename weight_t_>
struct Selective_Scan_fwd_kernel_traits {
static_assert(kNItems_ % 4 == 0);
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
// Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads improves occupancy.
static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3;
static constexpr int kNItems = kNItems_;
static constexpr int kNRows = kNRows_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
static constexpr int kNElts = kNBytes == 4 ? 4 : constexpr_min(8, kNItems);
static_assert(kNItems % kNElts == 0);
static constexpr int kNLoads = kNItems / kNElts;
static constexpr bool kIsEvenLen = kIsEvenLen_;
static constexpr bool kIsVariableB = kIsVariableB_;
static constexpr bool kIsVariableC = kIsVariableC_;
static constexpr bool kHasZ = kHasZ_;
static constexpr bool kUseIndex = kUseIndex_;
static constexpr bool kDirectIO = kIsEvenLen && kNLoads == 1;
static constexpr int kNLoadsIndex = kNItems / 4;
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
using scan_t = float2;
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads,
!kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
using BlockLoadIndexT = cub::BlockLoad<int, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadIndexVecT = cub::BlockLoad<uint4, kNThreads, kNLoadsIndex,
!(kIsEvenLen && kNLoadsIndex == 1) ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, kNItems , cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads ,
!kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads,
!kDirectIO ? cub::BLOCK_STORE_WARP_TRANSPOSE : cub::BLOCK_STORE_DIRECT>;
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
static constexpr int kSmemIOSize = custom_max({sizeof(typename BlockLoadT::TempStorage),
sizeof(typename BlockLoadVecT::TempStorage),
sizeof(typename BlockLoadIndexT::TempStorage),
sizeof(typename BlockLoadIndexVecT::TempStorage),
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
sizeof(typename BlockStoreT::TempStorage),
sizeof(typename BlockStoreVecT::TempStorage)});
static constexpr int kSmemSize = kSmemIOSize + sizeof(typename BlockScanT::TempStorage);
};
template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks)
void selective_scan_fwd_kernel(SSMParamsBase params) {
constexpr bool kIsVariableB = Ktraits::kIsVariableB;
constexpr bool kIsVariableC = Ktraits::kIsVariableC;
constexpr bool kHasZ = Ktraits::kHasZ;
constexpr bool kUseIndex = Ktraits::kUseIndex;
constexpr int kNThreads = Ktraits::kNThreads;
constexpr int kNItems = Ktraits::kNItems;
constexpr int kNRows = Ktraits::kNRows;
constexpr bool kDirectIO = Ktraits::kDirectIO;
using input_t = typename Ktraits::input_t;
using weight_t = typename Ktraits::weight_t;
using scan_t = typename Ktraits::scan_t;
// Shared memory.
extern __shared__ char smem_[];
// cast to lvalue reference of expected type
// char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
auto& smem_load_index = reinterpret_cast<typename Ktraits::BlockLoadIndexT::TempStorage&>(smem_);
auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
// weight_t *smem_a = reinterpret_cast<weight_t *>(smem_ + smem_loadstorescan_size);
// weight_t *smem_bc = reinterpret_cast<weight_t *>(smem_a + MAX_DSTATE);
scan_t *smem_running_prefix = reinterpret_cast<scan_t *>(smem_ + Ktraits::kSmemSize);
const int batch_id = blockIdx.x;
const int dim_id = blockIdx.y;
const int group_id = dim_id / (params.dim_ngroups_ratio);
input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride
+ dim_id * kNRows * params.u_d_stride;
input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride
+ dim_id * kNRows * params.delta_d_stride;
weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * kNRows * params.A_d_stride;
weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * kNRows * params.B_d_stride;
input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride;
weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * kNRows * params.C_d_stride;
input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride;
scan_t *x = reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id * kNRows) * params.n_chunks * params.dstate;
int *index = !kUseIndex ? nullptr :reinterpret_cast<int *>(params.index_ptr) + batch_id * params.seqlen;
float D_val[kNRows] = {0};
if (params.D_ptr != nullptr) {
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
D_val[r] = reinterpret_cast<float *>(params.D_ptr)[dim_id * kNRows + r];
}
}
float delta_bias[kNRows] = {0};
if (params.delta_bias_ptr != nullptr) {
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
delta_bias[r] = reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id * kNRows + r];
}
}
// for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
// smem_a[state_idx] = A[state_idx * params.A_dstate_stride];
// smem_bc[state_idx] = B[state_idx * params.B_dstate_stride] * C[state_idx * params.C_dstate_stride];
// }
constexpr int kChunkSize = kNThreads * kNItems;
for (int chunk = 0; chunk < params.n_chunks; ++chunk) {
input_t u_vals[kNRows][kNItems], delta_vals_load[kNRows][kNItems];
int index_vals_load[kNRows][kNItems];
__syncthreads();
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
if constexpr (!kDirectIO) {
if (r > 0) { __syncthreads(); }
}
load_input<Ktraits>(u + r * params.u_d_stride, u_vals[r], smem_load, params.seqlen - chunk * kChunkSize);
if constexpr (!kDirectIO) { __syncthreads(); }
load_input<Ktraits>(delta + r * params.delta_d_stride, delta_vals_load[r], smem_load, params.seqlen - chunk * kChunkSize);
if constexpr (kUseIndex) {
load_index<Ktraits>(index + r * params.delta_d_stride, index_vals_load[r], smem_load_index, params.seqlen - chunk * kChunkSize);
}
}
if constexpr (kUseIndex) {
index += kChunkSize;
}
u += kChunkSize;
delta += kChunkSize;
float delta_vals[kNRows][kNItems], delta_u_vals[kNRows][kNItems], out_vals[kNRows][kNItems];
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
float u_val = float(u_vals[r][i]);
delta_vals[r][i] = float(delta_vals_load[r][i]) + delta_bias[r];
if (params.delta_softplus) {
delta_vals[r][i] = delta_vals[r][i] <= 20.f ? log1pf(expf(delta_vals[r][i])) : delta_vals[r][i];
}
delta_u_vals[r][i] = delta_vals[r][i] * u_val;
out_vals[r][i] = D_val[r] * u_val;
}
}
__syncthreads();
for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
weight_t A_val[kNRows];
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
A_val[r] = A[state_idx * params.A_dstate_stride + r * params.A_d_stride];
// Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
constexpr float kLog2e = M_LOG2E;
A_val[r] *= kLog2e;
}
// This variable holds B * C if both B and C are constant across seqlen. If only B varies
// across seqlen, this holds C. If only C varies across seqlen, this holds B.
// If both B and C vary, this is unused.
weight_t BC_val[kNRows];
weight_t B_vals[kNItems], C_vals[kNItems];
if constexpr (kIsVariableB) {
load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
smem_load_weight, (params.seqlen - chunk * kChunkSize) * (1));
if constexpr (!kIsVariableC) {
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
BC_val[r] = C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
}
}
}
if constexpr (kIsVariableC) {
auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (1 ));
if constexpr (!kIsVariableB) {
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride];
}
}
}
if constexpr (!kIsVariableB && !kIsVariableC) {
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride] * C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
}
}
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
if (r > 0) { __syncthreads(); } // Scan could be using the same smem
scan_t thread_data[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
thread_data[i] = make_float2(exp2f(delta_vals[r][i] * A_val[r]),
!kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]);
// Reset A bar for cumulative sequences (Real)
if constexpr (kUseIndex) {
if (index_vals_load[r][i] == 0) {
thread_data[i].x = 0.f;
}
}
if constexpr (!Ktraits::kIsEvenLen) { // So that the last state is correct
if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
thread_data[i] = make_float2(1.f, 0.f);
}
}
}
// Initialize running total
scan_t running_prefix;
// If we use WARP_SCAN then all lane 0 of all warps (not just thread 0) needs to read
running_prefix = chunk == 0 ? x[(r * params.n_chunks) * params.dstate + state_idx] : ( threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float2(1.f, 0.f));
// running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float2(1.f, 0.f);
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
typename Ktraits::BlockScanT(smem_scan).InclusiveScan(
thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
);
// There's a syncthreads in the scan op, so we don't need to sync here.
// Unless there's only 1 warp, but then it's the same thread (0) reading and writing.
if (threadIdx.x == 0) {
smem_running_prefix[state_idx] = prefix_op.running_prefix;
x[(r * params.n_chunks + chunk) * params.dstate + state_idx] = prefix_op.running_prefix;
}
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
const weight_t C_val = !kIsVariableC
? BC_val[r]
: (!kIsVariableB ? BC_val[r] * C_vals[i] : C_vals[i]);
out_vals[r][i] += thread_data[i].y * C_val;
}
}
}
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
+ dim_id * kNRows * params.out_d_stride + chunk * kChunkSize;
__syncthreads();
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
if constexpr (!kDirectIO) {
if (r > 0) { __syncthreads(); }
}
store_output<Ktraits>(out + r * params.out_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
}
if constexpr (kHasZ) {
input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride
+ dim_id * kNRows * params.z_d_stride + chunk * kChunkSize;
input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride
+ dim_id * kNRows * params.out_z_d_stride + chunk * kChunkSize;
#pragma unroll
for (int r = 0; r < kNRows; ++r) {
input_t z_vals[kNItems];
__syncthreads();
load_input<Ktraits>(z + r * params.z_d_stride, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
float z_val = z_vals[i];
out_vals[r][i] *= z_val / (1 + expf(-z_val));
}
__syncthreads();
store_output<Ktraits>(out_z + r * params.out_z_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
}
}
Bvar += kChunkSize * 1;
Cvar += kChunkSize * 1;
}
}
template<int kNThreads, int kNItems, typename input_t, typename weight_t>
void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
// Only kNRows == 1 is tested for now, which ofc doesn't differ from previously when we had each block
// processing 1 row.
constexpr int kNRows = 1;
// kIsVariableB, kIsVariableC and kHasZ are all set to True to reduce binary size
constexpr bool kIsVariableB = true;
constexpr bool kIsVariableC = true;
constexpr bool kHasZ = true;
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
BOOL_SWITCH(params.index_ptr != nullptr , kUseIndex, [&] {
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, kUseIndex, input_t, weight_t>;
constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
dim3 grid(params.batch, params.dim / kNRows);
auto kernel = &selective_scan_fwd_kernel<Ktraits>;
if (kSmemSize >= 48 * 1024) {
C10_CUDA_CHECK(cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
}
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
}
template<typename input_t, typename weight_t>
void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream) {
#ifndef USE_ROCM
if (params.seqlen <= 128) {
selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 256) {
selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 512) {
selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 1024) {
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
} else {
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
}
#else
if (params.seqlen <= 256) {
selective_scan_fwd_launch<64, 4, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 512) {
selective_scan_fwd_launch<64, 8, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 1024) {
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
} else {
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
}
#endif
}
template void selective_scan_fwd_cuda<at::BFloat16, float>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<at::Half, float>(SSMParamsBase &params, cudaStream_t stream);
template void selective_scan_fwd_cuda<float, float>(SSMParamsBase &params, cudaStream_t stream);
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
if (ITYPE == at::ScalarType::Half) { \
using input_t = at::Half; \
using weight_t = float; \
__VA_ARGS__(); \
} else if (ITYPE == at::ScalarType::BFloat16) { \
using input_t = at::BFloat16; \
using weight_t = float; \
__VA_ARGS__(); \
} else if (ITYPE == at::ScalarType::Float) { \
using input_t = float; \
using weight_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
}
template<typename input_t, typename weight_t>
void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream);
void set_ssm_params_fwd(SSMParamsBase &params,
// sizes
const size_t batch,
const size_t dim,
const size_t seqlen,
const size_t dstate,
const size_t n_groups,
const size_t n_chunks,
const bool is_variable_B,
const bool is_variable_C,
// device pointers
const torch::Tensor u,
const torch::Tensor delta,
const torch::Tensor A,
const torch::Tensor B,
const torch::Tensor C,
const torch::Tensor out,
const torch::Tensor z,
const torch::Tensor out_z,
void* D_ptr,
void* delta_bias_ptr,
void* x_ptr,
bool has_z,
bool delta_softplus,
void* index_ptr) {
// Reset the parameters
memset(&params, 0, sizeof(params));
params.batch = batch;
params.dim = dim;
params.seqlen = seqlen;
params.dstate = dstate;
params.n_groups = n_groups;
params.n_chunks = n_chunks;
params.dim_ngroups_ratio = dim / n_groups;
params.delta_softplus = delta_softplus;
params.is_variable_B = is_variable_B;
params.is_variable_C = is_variable_C;
// Set the pointers and strides.
params.u_ptr = u.data_ptr();
params.delta_ptr = delta.data_ptr();
params.A_ptr = A.data_ptr();
params.B_ptr = B.data_ptr();
params.C_ptr = C.data_ptr();
params.D_ptr = D_ptr;
params.delta_bias_ptr = delta_bias_ptr;
params.out_ptr = out.data_ptr();
params.x_ptr = x_ptr;
params.z_ptr = has_z ? z.data_ptr() : nullptr;
params.out_z_ptr = has_z ? out_z.data_ptr() : nullptr;
params.index_ptr = index_ptr;
// All stride are in elements, not bytes.
params.A_d_stride = A.stride(0);
params.A_dstate_stride = A.stride(1);
if (!is_variable_B) {
params.B_d_stride = B.stride(0);
} else {
params.B_batch_stride = B.stride(0);
params.B_group_stride = B.stride(1);
}
params.B_dstate_stride = !is_variable_B ? B.stride(1) : B.stride(2);
if (!is_variable_C) {
params.C_d_stride = C.stride(0);
} else {
params.C_batch_stride = C.stride(0);
params.C_group_stride = C.stride(1);
}
params.C_dstate_stride = !is_variable_C ? C.stride(1) : C.stride(2);
params.u_batch_stride = u.stride(0);
params.u_d_stride = u.stride(1);
params.delta_batch_stride = delta.stride(0);
params.delta_d_stride = delta.stride(1);
if (has_z) {
params.z_batch_stride = z.stride(0);
params.z_d_stride = z.stride(1);
params.out_z_batch_stride = out_z.stride(0);
params.out_z_d_stride = out_z.stride(1);
}
params.out_batch_stride = out.stride(0);
params.out_d_stride = out.stride(1);
}
std::vector<torch::Tensor>
selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
const torch::Tensor &A, const torch::Tensor &B, const torch::Tensor &C,
const c10::optional<torch::Tensor> &D_,
const c10::optional<torch::Tensor> &z_,
const c10::optional<torch::Tensor> &delta_bias_,
bool delta_softplus,
const c10::optional<torch::Tensor> &index_,
const c10::optional<torch::Tensor> &x) {
auto input_type = u.scalar_type();
auto weight_type = A.scalar_type();
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
TORCH_CHECK(weight_type == at::ScalarType::Float);
const bool is_variable_B = B.dim() >= 3;
const bool is_variable_C = C.dim() >= 3;
TORCH_CHECK(delta.scalar_type() == input_type);
TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));
TORCH_CHECK(u.is_cuda());
TORCH_CHECK(delta.is_cuda());
TORCH_CHECK(A.is_cuda());
TORCH_CHECK(B.is_cuda());
TORCH_CHECK(C.is_cuda());
TORCH_CHECK(u.stride(-1) == 1 || u.size(-1) == 1);
TORCH_CHECK(delta.stride(-1) == 1 || delta.size(-1) == 1);
const auto sizes = u.sizes();
const int batch_size = sizes[0];
const int dim = sizes[1];
const int seqlen = sizes[2];
const int dstate = A.size(1);
const int n_groups = is_variable_B ? B.size(1) : 1;
TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256");
CHECK_SHAPE(u, batch_size, dim, seqlen);
CHECK_SHAPE(delta, batch_size, dim, seqlen);
CHECK_SHAPE(A, dim, dstate);
TORCH_CHECK(is_variable_B, "is_variable_B = False is disabled in favor of reduced binary size")
CHECK_SHAPE(B, batch_size, n_groups, dstate, seqlen );
TORCH_CHECK(B.stride(-1) == 1 || B.size(-1) == 1);
TORCH_CHECK(is_variable_C, "is_variable_C = False is disabled in favor of reduced binary size")
CHECK_SHAPE(C, batch_size, n_groups, dstate, seqlen);
TORCH_CHECK(C.stride(-1) == 1 || C.size(-1) == 1);
if (D_.has_value()) {
auto D = D_.value();
TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
TORCH_CHECK(D.is_cuda());
TORCH_CHECK(D.stride(-1) == 1 || D.size(-1) == 1);
CHECK_SHAPE(D, dim);
}
if (delta_bias_.has_value()) {
auto delta_bias = delta_bias_.value();
TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
TORCH_CHECK(delta_bias.is_cuda());
TORCH_CHECK(delta_bias.stride(-1) == 1 || delta_bias.size(-1) == 1);
CHECK_SHAPE(delta_bias, dim);
}
if (index_.has_value()) {
auto index = index_.value();
TORCH_CHECK(index.scalar_type() == at::ScalarType::Int);
TORCH_CHECK(index.is_cuda());
CHECK_SHAPE(index, batch_size, seqlen);
}
at::Tensor z, out_z;
const bool has_z = z_.has_value();
TORCH_CHECK(has_z, "has_z = False is disabled in favor of reduced binary size")
z = z_.value();
TORCH_CHECK(z.scalar_type() == input_type);
TORCH_CHECK(z.is_cuda());
TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
CHECK_SHAPE(z, batch_size, dim, seqlen);
out_z = torch::empty_like(z);
const int n_chunks = (seqlen + 2048 - 1) / 2048;
// const int n_chunks = (seqlen + 1024 - 1) / 1024;
// at::Tensor out = torch::empty_like(u);
// Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout
at::Tensor out = torch::empty_like(delta);
if (x.has_value()){
auto _x = x.value();
TORCH_CHECK(_x.scalar_type() == weight_type);
TORCH_CHECK(_x.is_cuda());
TORCH_CHECK(_x.stride(-1) == 1);
CHECK_SHAPE(_x, batch_size, dim, n_chunks, dstate * 2);
}
SSMParamsBase params;
set_ssm_params_fwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
u, delta, A, B, C, out, z, out_z,
D_.has_value() ? D_.value().data_ptr() : nullptr,
delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
x.value().data_ptr(),
has_z,
delta_softplus,
index_.has_value() ? index_.value().data_ptr() : nullptr);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)u.get_device()};
auto stream = at::cuda::getCurrentCUDAStream().stream();
DISPATCH_WTYPE_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] {
selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
});
std::vector<at::Tensor> result = {out, x.value()};
if (has_z) { result.push_back(out_z); }
return result;
}

View File

@ -0,0 +1,28 @@
// Inspired by
// https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
// and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
// clang-format off
// adapted from https://github.com/state-spaces/mamba/blob/main/csrc/selective_scan/static_switch.h
#pragma once
/// @param COND - a boolean expression to switch by
/// @param CONST_NAME - a name given for the constexpr bool variable.
/// @param ... - code to execute for true and false
///
/// Usage:
/// ```
/// BOOL_SWITCH(flag, BoolConst, [&] {
/// some_function<BoolConst>(...);
/// });
/// ```
#define BOOL_SWITCH(COND, CONST_NAME, ...) \
[&] { \
if (COND) { \
constexpr bool CONST_NAME = true; \
return __VA_ARGS__(); \
} else { \
constexpr bool CONST_NAME = false; \
return __VA_ARGS__(); \
} \
}()

View File

@ -195,6 +195,28 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad);
std::vector<torch::Tensor> selective_scan_fwd(
const torch::Tensor& u, const torch::Tensor& delta, const torch::Tensor& A,
const torch::Tensor& B, const torch::Tensor& C,
const c10::optional<torch::Tensor>& D_,
const c10::optional<torch::Tensor>& z_,
const c10::optional<torch::Tensor>& delta_bias_, bool delta_softplus,
const c10::optional<torch::Tensor>& index_,
const c10::optional<torch::Tensor>& x);
at::Tensor causal_conv1d_update(const at::Tensor& x,
const at::Tensor& conv_state,
const at::Tensor& weight,
const c10::optional<at::Tensor>& bias_,
bool silu_activation);
at::Tensor causal_conv1d_fwd(const at::Tensor& x, const at::Tensor& weight,
const c10::optional<at::Tensor>& bias_,
const c10::optional<at::Tensor>& seq_idx_,
const c10::optional<at::Tensor>& initial_states_,
const c10::optional<at::Tensor>& final_states_out_,
bool silu_activation);
#ifndef USE_ROCM
using fptr_t = int64_t;
fptr_t init_custom_ar(torch::Tensor& meta, torch::Tensor& rank_data,

View File

@ -202,6 +202,31 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.def("cutlass_scaled_mm_supports_fp8", &cutlass_scaled_mm_supports_fp8);
ops.impl("cutlass_scaled_mm_supports_fp8", torch::kCUDA,
&cutlass_scaled_mm_supports_fp8);
// Mamba selective scan kernel
ops.def(
"selective_scan_fwd(Tensor! u, Tensor! delta,"
"Tensor! A, Tensor! B, Tensor! C,"
"Tensor? D_, Tensor? z_, Tensor? delta_bias_,"
"bool delta_softplus,"
"Tensor? index_, Tensor? x) -> Tensor[]");
ops.impl("selective_scan_fwd", torch::kCUDA, &selective_scan_fwd);
ops.def(
"causal_conv1d_update(Tensor! x,"
"Tensor! conv_state,"
"Tensor! weight,"
"Tensor? bias_,"
"bool silu_activation) -> Tensor");
ops.impl("causal_conv1d_update", torch::kCUDA, &causal_conv1d_update);
ops.def(
"causal_conv1d_fwd(Tensor! x, Tensor! weight,"
"Tensor? bias_,"
"Tensor? seq_idx_,"
"Tensor? initial_states_,"
"Tensor? final_states_out_,"
"bool silu_activation) -> Tensor");
ops.impl("causal_conv1d_fwd", torch::kCUDA, &causal_conv1d_fwd);
#endif
// Quantized GEMM for GPTQ.

View File

@ -1,3 +0,0 @@
# Mamba dependencies
mamba-ssm>=1.2.2
causal-conv1d>=1.2.0

View File

@ -11,7 +11,7 @@ pytest-shard
# testing utils
awscli
einops # required for MPT and qwen-vl
einops # required for MPT, qwen-vl and Mamba
httpx
peft
requests

View File

@ -0,0 +1,205 @@
from typing import Optional
import pytest
import torch
import torch.nn.functional as F
from einops import rearrange
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
causal_conv1d_fn, causal_conv1d_update)
def causal_conv1d_ref(
x: torch.Tensor,
weight: torch.Tensor,
bias: Optional[torch.Tensor] = None,
initial_states: Optional[torch.Tensor] = None,
return_final_states: bool = False,
final_states_out: Optional[torch.Tensor] = None,
activation: Optional[str] = "silu",
):
"""
x: (batch, dim, seqlen)
weight: (dim, width)
bias: (dim,)
initial_states: (batch, dim, width - 1)
final_states_out: (batch, dim, width - 1)
out: (batch, dim, seqlen)
"""
if activation not in [None, "silu", "swish"]:
raise NotImplementedError("activation must be None, silu, or swish")
dtype_in = x.dtype
x = x.to(weight.dtype)
seqlen = x.shape[-1]
dim, width = weight.shape
if initial_states is None:
out = F.conv1d(x,
weight.unsqueeze(1),
bias,
padding=width - 1,
groups=dim)
else:
x = torch.cat([initial_states, x], dim=-1)
out = F.conv1d(x, weight.unsqueeze(1), bias, padding=0, groups=dim)
out = out[..., :seqlen]
if return_final_states:
final_states = F.pad(x, (width - 1 - x.shape[-1], 0)).to(
dtype_in) # (batch, dim, width - 1)
if final_states_out is not None:
final_states_out.copy_(final_states)
else:
final_states_out = final_states
out = (out if activation is None else F.silu(out)).to(dtype=dtype_in)
return (out, None) if not return_final_states else (out, final_states_out)
def causal_conv1d_update_ref(x: torch.Tensor,
conv_state: torch.Tensor,
weight: torch.Tensor,
bias: Optional[torch.Tensor] = None,
activation: Optional[str] = None):
"""
x: (batch, dim)
conv_state: (batch, dim, width)
weight: (dim, width)
bias: (dim,)
out: (batch, dim)
"""
if activation not in [None, "silu", "swish"]:
raise NotImplementedError("activation must be None, silu, or swish")
dtype_in = x.dtype
batch, dim = x.shape
width = weight.shape[1]
assert conv_state.shape == (batch, dim, width)
assert weight.shape == (dim, width)
conv_state.copy_(torch.roll(conv_state, shifts=-1,
dims=-1)) # Update state (B D W)
conv_state[:, :, -1] = x
out = torch.sum(conv_state * weight, dim=-1) # (B D)
if bias is not None:
out += bias
return (out if activation is None else F.silu(out)).to(dtype=dtype_in)
@pytest.mark.parametrize("return_final_states", [False, True])
@pytest.mark.parametrize("has_initial_states", [False, True])
@pytest.mark.parametrize("channel_last", [False, True])
@pytest.mark.parametrize("itype", [torch.bfloat16])
@pytest.mark.parametrize("silu_activation", [False, True])
@pytest.mark.parametrize("has_bias", [False, True])
@pytest.mark.parametrize("width", [4])
@pytest.mark.parametrize("seqlen", [128, 512, 4096])
@pytest.mark.parametrize('dim', [64, 4096 + 32])
@pytest.mark.parametrize('batch', [1, 2])
def test_causal_conv1d(batch, dim, seqlen, width, has_bias, silu_activation,
itype, channel_last, has_initial_states,
return_final_states):
if not channel_last and (has_initial_states or return_final_states):
pytest.skip(
"Only channel_last support initial_states or return_final_states")
device = "cuda"
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
# set seed
torch.random.manual_seed(0)
if not channel_last:
x = torch.randn(batch,
4096 + dim + 64,
seqlen,
device=device,
dtype=itype)[:, 4096:4096 + dim, :]
else:
x = rearrange(
torch.randn(batch,
seqlen,
4096 + dim + 64,
device=device,
dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s")
weight = torch.randn(dim, width, device=device, dtype=itype)
bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
if has_initial_states:
initial_states = torch.randn(batch,
width - 1,
dim,
device=device,
dtype=itype).transpose(1, 2)
else:
initial_states = None
x_ref = x.detach().clone()
weight_ref = weight.detach().clone()
bias_ref = bias.detach().clone() if bias is not None else None
initial_states_ref = initial_states.detach().clone(
) if initial_states is not None else None
activation = None if not silu_activation else "silu"
out, final_states = causal_conv1d_fn(
x,
weight,
bias,
initial_states=initial_states,
return_final_states=return_final_states,
activation=activation)
out_ref, final_states_ref = causal_conv1d_ref(
x_ref,
weight_ref,
bias_ref,
initial_states=initial_states_ref,
return_final_states=return_final_states,
activation=activation)
if return_final_states:
assert final_states is not None and final_states_ref is not None
assert torch.allclose(final_states,
final_states_ref,
rtol=rtol,
atol=atol)
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
if return_final_states:
out += F.sigmoid(final_states).sum(dim=-1, keepdim=True)
out_ref += F.sigmoid(final_states_ref).sum(dim=-1, keepdim=True)
@pytest.mark.parametrize("itype", [torch.bfloat16])
@pytest.mark.parametrize("silu_activation", [False, True])
@pytest.mark.parametrize("has_bias", [False, True])
@pytest.mark.parametrize("width", [2, 3, 4])
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
@pytest.mark.parametrize("batch", [1, 2])
def test_causal_conv1d_update(batch, dim, width, has_bias, silu_activation,
itype):
device = "cuda"
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
# set seed
torch.random.manual_seed(0)
batch = 2
x = torch.randn(batch, dim, device=device, dtype=itype)
conv_state = torch.randn(batch, dim, width, device=device, dtype=itype)
weight = torch.randn(dim,
width,
device=device,
dtype=itype,
requires_grad=True)
if has_bias:
bias = torch.randn(dim, device=device, dtype=itype, requires_grad=True)
else:
bias = None
conv_state_ref = conv_state.detach().clone()
activation = None if not silu_activation else "silu"
out = causal_conv1d_update(x,
conv_state,
weight,
bias,
activation=activation)
out_ref = causal_conv1d_update_ref(x,
conv_state_ref,
weight,
bias,
activation=activation)
assert torch.equal(conv_state, conv_state_ref)
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)

View File

@ -0,0 +1,324 @@
import pytest
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from vllm.model_executor.layers.mamba.ops.mamba_ssm import (
selective_scan_fn, selective_state_update)
def selective_state_update_ref(state,
x,
dt,
A,
B,
C,
D=None,
z=None,
dt_bias=None,
dt_softplus=False):
"""
Argument:
state: (batch, dim, dstate) or (batch, nheads, dim, dstate)
x: (batch, dim) or (batch, nheads, dim)
dt: (batch, dim) or (batch, nheads, dim)
A: (dim, dstate) or (nheads, dim, dstate)
B: (batch, dstate) or (batch, ngroups, dstate)
C: (batch, dstate) or (batch, ngroups, dstate)
D: (dim,) or (nheads, dim)
z: (batch, dim) or (batch, nheads, dim)
dt_bias: (dim,) or (nheads, dim)
Return:
out: (batch, dim) or (batch, nheads, dim)
"""
has_heads = state.dim() > 3
if state.dim() == 3:
state = state.unsqueeze(1)
if x.dim() == 2:
x = x.unsqueeze(1)
if dt.dim() == 2:
dt = dt.unsqueeze(1)
if A.dim() == 2:
A = A.unsqueeze(0)
if B.dim() == 2:
B = B.unsqueeze(1)
if C.dim() == 2:
C = C.unsqueeze(1)
if D is not None and D.dim() == 1:
D = D.unsqueeze(0)
if z is not None and z.dim() == 2:
z = z.unsqueeze(1)
if dt_bias is not None and dt_bias.dim() == 1:
dt_bias = dt_bias.unsqueeze(0)
batch, nheads, dim, dstate = state.shape
assert x.shape == (batch, nheads, dim)
assert dt.shape == x.shape
assert A.shape == (nheads, dim, dstate)
ngroups = B.shape[1]
assert nheads % ngroups == 0, "nheads must be divisible by ngroups"
assert B.shape == (batch, ngroups, dstate)
assert C.shape == B.shape
if D is not None:
assert D.shape == (nheads, dim)
if z is not None:
assert z.shape == x.shape
if dt_bias is not None:
assert dt_bias.shape == (nheads, dim)
dt = dt + dt_bias
dt = F.softplus(dt) if dt_softplus else dt
dA = torch.exp(rearrange(dt, "b h d -> b h d 1") *
A) # (batch, nheads, dim, dstate)
B = repeat(B, "b g n -> b (g h) n",
h=nheads // ngroups) # (batch, nheads, dstate)
C = repeat(C, "b g n -> b (g h) n",
h=nheads // ngroups) # (batch, nheads, dstate)
dB = rearrange(dt, "b h d -> b h d 1") * rearrange(
B, "b h n -> b h 1 n") # (batch, nheads, dim, dstate)
state.copy_(state * dA +
dB * rearrange(x, "b h d -> b h d 1")) # (batch, dim, dstate
out = torch.einsum("bhdn,bhn->bhd", state.to(C.dtype), C)
if D is not None:
out += (x * D).to(out.dtype)
out = (out if z is None else out * F.silu(z)).to(x.dtype)
if not has_heads:
out = out.squeeze(1)
return out
def selective_scan_ref(u,
delta,
A,
B,
C,
D=None,
z=None,
delta_bias=None,
delta_softplus=False,
return_last_state=False,
position_indices=None,
prev_state=None):
"""
u: r(B D L)
delta: r(B D L)
A: c(D N) or r(D N)
B: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
C: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
D: r(D)
z: r(B D L)
delta_bias: r(D), fp32
prev_state: r(B D N), fp32
out: r(B D L)
last_state (optional): r(B D dstate) or c(B D dstate)
"""
dtype_in = u.dtype
u = u.float()
delta = delta.float()
if delta_bias is not None:
delta = delta + delta_bias[..., None].float()
if delta_softplus:
delta = F.softplus(delta)
batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
is_variable_B = B.dim() >= 3
is_variable_C = C.dim() >= 3
B = B.float()
C = C.float()
x = A.new_zeros((batch, dim, dstate)) if prev_state is None else prev_state
ys = []
deltaA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
if not is_variable_B:
deltaB_u = torch.einsum('bdl,dn,bdl->bdln', delta, B, u)
else:
if B.dim() == 3:
deltaB_u = torch.einsum('bdl,bnl,bdl->bdln', delta, B, u)
else:
B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
deltaB_u = torch.einsum('bdl,bdnl,bdl->bdln', delta, B, u)
if is_variable_C and C.dim() == 4:
C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
last_state = None
for i in range(u.shape[2]):
if position_indices is not None and position_indices[0, i] == 0:
x = deltaB_u[:, :, i]
else:
x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
if not is_variable_C:
y = torch.einsum('bdn,dn->bd', x, C)
else:
if C.dim() == 3:
y = torch.einsum('bdn,bn->bd', x, C[:, :, i])
else:
y = torch.einsum('bdn,bdn->bd', x, C[:, :, :, i])
if i == u.shape[2] - 1:
last_state = x
ys.append(y)
y = torch.stack(ys, dim=2) # (batch dim L)
out = y if D is None else y + u * rearrange(D, "d -> d 1")
if z is not None:
out = out * F.silu(z)
out = out.to(dtype=dtype_in)
return out if not return_last_state else (out, last_state)
@pytest.mark.parametrize('wtype', [torch.float32])
@pytest.mark.parametrize('itype', [torch.float32])
@pytest.mark.parametrize('seqlen', [128, 256, 512, 1024, 2048, 4096])
@pytest.mark.parametrize("return_last_state", [True])
@pytest.mark.parametrize('has_delta_bias', [True])
@pytest.mark.parametrize('delta_softplus', [True])
@pytest.mark.parametrize('has_z', [True])
@pytest.mark.parametrize('has_D', [True])
@pytest.mark.parametrize("varBC_groups", [1, 2])
@pytest.mark.parametrize("is_variable_C", [True])
@pytest.mark.parametrize("is_variable_B", [True])
@pytest.mark.parametrize("scan_chunks", [1, 2, 3])
def test_selective_scan(is_variable_B, is_variable_C, varBC_groups, has_D,
has_z, has_delta_bias, delta_softplus,
return_last_state, seqlen, itype, wtype, scan_chunks):
if varBC_groups > 1 and (not is_variable_B or not is_variable_C):
pytest.skip() # This config is not applicable
device = 'cuda'
rtol, atol = (6e-4, 2e-3) if itype == torch.float32 else (3e-3, 5e-3)
if itype == torch.bfloat16:
rtol, atol = 3e-2, 5e-2
rtolw, atolw = (1e-3, 1e-3)
if has_z: # If we have z, the errors on the weights seem higher
rtolw = max(rtolw, rtol)
atolw = max(atolw, atol)
# set seed
torch.random.manual_seed(0)
batch_size = 2
dim = 4
dstate = 8
A = (-0.5 * torch.rand(dim, dstate, device=device, dtype=wtype))
if not is_variable_B:
B_shape = [dim, dstate]
elif varBC_groups == 1:
B_shape = [batch_size, dstate, seqlen]
else:
B_shape = [batch_size, varBC_groups, dstate, seqlen]
B = torch.randn(B_shape,
device=device,
dtype=wtype if not is_variable_B else itype)
if not is_variable_C:
C_shape = [dim, dstate]
elif varBC_groups == 1:
C_shape = [batch_size, dstate, seqlen]
else:
C_shape = [batch_size, varBC_groups, dstate, seqlen]
C = torch.randn(C_shape,
device=device,
dtype=wtype if not is_variable_C else itype)
D = torch.randn(dim, device=device, dtype=torch.float32) if has_D else None
z = torch.randn(batch_size, dim, seqlen, device=device,
dtype=itype) if has_z else None
delta_bias = (0.5 * torch.rand(dim, device=device, dtype=torch.float32)
) if has_delta_bias else None
u = torch.randn(batch_size, dim, seqlen, device=device, dtype=itype)
delta = (0.5 *
torch.rand(batch_size, dim, seqlen, device=device, dtype=itype))
state = None
state_ref = None
out = None
out_ref = None
outs = []
for c in range(scan_chunks):
chunked_prompt_len = seqlen // scan_chunks
chunk_start = chunked_prompt_len * c
chunk_end = chunked_prompt_len * (c + 1)
if c == scan_chunks - 1:
chunk_end = seqlen
_B = B
if is_variable_B:
_B = B[..., chunk_start:chunk_end]
_C = C
if is_variable_B:
_C = C[..., chunk_start:chunk_end]
_z = z
if has_z:
assert z is not None
_z = z[..., chunk_start:chunk_end]
out, *rest = selective_scan_fn(u[..., chunk_start:chunk_end],
delta[..., chunk_start:chunk_end],
A,
_B,
_C,
D,
z=_z,
delta_bias=delta_bias,
delta_softplus=delta_softplus,
return_last_state=return_last_state,
prev_state=state if c > 0 else None)
outs.append(out)
if return_last_state:
state = rest[0]
if len(outs) > 1:
out = torch.cat(outs, dim=-1)
out_ref, *rest = selective_scan_ref(u,
delta,
A,
B,
C,
D,
z=z,
delta_bias=delta_bias,
delta_softplus=delta_softplus,
return_last_state=return_last_state)
if return_last_state:
state_ref = rest[0]
assert out is not None and out_ref is not None
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
if return_last_state:
assert state is not None and state_ref is not None
assert torch.allclose(state, state_ref, rtol=rtol, atol=atol)
@pytest.mark.parametrize("itype",
[torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("has_z", [False, True])
@pytest.mark.parametrize("dstate", [16, 32, 64])
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
def test_selective_state_update(dim, dstate, has_z, itype):
device = "cuda"
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (5e-3, 1e-2)
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
if torch.version.hip:
atol *= 2
# set seed
torch.random.manual_seed(0)
batch_size = 1
state = torch.randn(batch_size, dim, dstate, dtype=itype, device=device)
x = torch.randn(batch_size, dim, device=device, dtype=itype)
dt = torch.randn(batch_size, dim, device=device, dtype=itype)
dt_bias = torch.rand(dim, device=device) - 4.0
A = -torch.rand(dim, dstate, device=device) - 1.0
B = torch.randn(batch_size, dstate, device=device)
C = torch.randn(batch_size, dstate, device=device)
D = torch.randn(dim, device=device)
z = torch.randn_like(x) if has_z else None
state_ref = state.detach().clone()
out = selective_state_update(state,
x,
dt,
A,
B,
C,
D=D,
z=z,
dt_bias=dt_bias,
dt_softplus=True)
out_ref = selective_state_update_ref(state_ref,
x,
dt,
A,
B,
C,
D=D,
z=z,
dt_bias=dt_bias,
dt_softplus=True)
assert torch.allclose(state, state_ref, rtol=rtol, atol=atol)
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)

View File

@ -500,6 +500,36 @@ def ggml_mul_mat_a8(
return torch.ops._C.ggml_mul_mat_a8(W, X, quant_type, row)
# mamba
def causal_conv1d_fwd(x: torch.Tensor, weight: torch.Tensor,
bias_: Optional[torch.Tensor],
seq_idx_: Optional[torch.Tensor],
initial_states_: Optional[torch.Tensor],
final_states_out_: Optional[torch.Tensor],
silu_activation: bool) -> torch.Tensor:
return torch.ops._C.causal_conv1d_fwd(x, weight, bias_, seq_idx_,
initial_states_, final_states_out_,
silu_activation)
def causal_conv1d_update(x: torch.Tensor, conv_state: torch.Tensor,
weight: torch.Tensor, bias_: Optional[torch.Tensor],
silu_activation: bool) -> torch.Tensor:
return torch.ops._C.causal_conv1d_update(x, conv_state, weight, bias_,
silu_activation)
def selective_scan_fwd(u: torch.Tensor, delta: torch.Tensor, A: torch.Tensor,
B: torch.Tensor, C: torch.Tensor,
D_: Optional[torch.Tensor], z_: Optional[torch.Tensor],
delta_bias_: Optional[torch.Tensor],
delta_softplus: bool, index_: Optional[torch.Tensor],
x: Optional[torch.Tensor]) -> List[torch.Tensor]:
return torch.ops._C.selective_scan_fwd(u, delta, A, B, C, D_, z_,
delta_bias_, delta_softplus, index_,
x)
# moe
def moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
block_size: int, sorted_token_ids: torch.Tensor,

View File

@ -0,0 +1,86 @@
# Copyright (c) 2024, Tri Dao.
from typing import Optional
import torch
from vllm import _custom_ops as ops
def causal_conv1d_fn(
x: torch.Tensor,
weight: torch.Tensor,
bias: Optional[torch.Tensor] = None,
seq_idx: Optional[torch.Tensor] = None,
initial_states: Optional[torch.Tensor] = None,
return_final_states: bool = False,
final_states_out=None,
activation: str = "silu",
):
"""
x: (batch, dim, seqlen)
weight: (dim, width)
bias: (dim,)
seq_idx: (batch, seqlen)
initial_states: (batch, dim, width - 1)
final_states_out: (batch, dim, width - 1), to be written to
activation: either None or "silu" or "swish"
out: (batch, dim, seqlen)
"""
if activation not in [None, "silu", "swish"]:
raise NotImplementedError("activation must be None, silu, or swish")
if x.stride(2) != 1 and x.stride(1) != 1:
x = x.contiguous()
bias = bias.contiguous() if bias is not None else None
if seq_idx is not None:
assert (initial_states is
None), "initial_states must be None if seq_idx is not None"
assert (not return_final_states
), "If seq_idx is not None, we don't return final_states_out"
seq_idx = seq_idx.contiguous() if seq_idx is not None else None
if initial_states is not None and (initial_states.stride(2) != 1
and initial_states.stride(1) != 1):
initial_states = initial_states.contiguous()
if return_final_states:
assert (
x.stride(1) == 1
), "Only channel-last layout support returning final_states_out"
if final_states_out is not None:
assert (final_states_out.stride(2) == 1
or final_states_out.stride(1) == 1)
else:
batch, dim, seqlen = x.shape
width = weight.shape[1]
final_states_out = torch.empty(batch,
width - 1,
dim,
device=x.device,
dtype=x.dtype).transpose(1, 2)
else:
final_states_out = None
out = ops.causal_conv1d_fwd(x, weight, bias, seq_idx, initial_states,
final_states_out, activation
in ["silu", "swish"])
return (out, None) if not return_final_states else (out, final_states_out)
def causal_conv1d_update(x: torch.Tensor,
conv_state: torch.Tensor,
weight: torch.Tensor,
bias: Optional[torch.Tensor] = None,
activation: Optional[str] = None):
"""
x: (batch, dim)
conv_state: (batch, dim, width)
weight: (dim, width)
bias: (dim,)
out: (batch, dim)
"""
if activation not in [None, "silu", "swish"]:
raise NotImplementedError("activation must be None, silu, or swish")
activation_bool = activation in ["silu", "swish"]
return ops.causal_conv1d_update(x, conv_state, weight, bias,
activation_bool)

View File

@ -0,0 +1,346 @@
# Copyright (c) 2024, Tri Dao, Albert Gu.
import torch
import triton
import triton.language as tl
from packaging import version
from vllm import _custom_ops as ops
TRITON3 = version.parse(triton.__version__) >= version.parse("3.0.0")
if TRITON3:
@triton.jit
def softplus(dt):
dt = tl.where(dt <= 20.0, tl.math.log(tl.math.exp(dt) + 1), dt)
return dt
else:
@triton.jit
def softplus(dt):
dt = tl.where(dt <= 20.0, tl.math.log1p(tl.exp(dt)), dt)
return dt
@triton.heuristics(
{"HAS_DT_BIAS": lambda args: args["dt_bias_ptr"] is not None})
@triton.heuristics({"HAS_D": lambda args: args["D_ptr"] is not None})
@triton.heuristics({"HAS_Z": lambda args: args["z_ptr"] is not None})
@triton.heuristics(
{"BLOCK_SIZE_DSTATE": lambda args: triton.next_power_of_2(args["dstate"])})
@triton.jit
def _selective_scan_update_kernel(
# Pointers to matrices
state_ptr,
x_ptr,
dt_ptr,
dt_bias_ptr,
A_ptr,
B_ptr,
C_ptr,
D_ptr,
z_ptr,
out_ptr,
# Matrix dimensions
batch,
nheads,
dim,
dstate,
nheads_ngroups_ratio,
# Strides
stride_state_batch,
stride_state_head,
stride_state_dim,
stride_state_dstate,
stride_x_batch,
stride_x_head,
stride_x_dim,
stride_dt_batch,
stride_dt_head,
stride_dt_dim,
stride_dt_bias_head,
stride_dt_bias_dim,
stride_A_head,
stride_A_dim,
stride_A_dstate,
stride_B_batch,
stride_B_group,
stride_B_dstate,
stride_C_batch,
stride_C_group,
stride_C_dstate,
stride_D_head,
stride_D_dim,
stride_z_batch,
stride_z_head,
stride_z_dim,
stride_out_batch,
stride_out_head,
stride_out_dim,
# Meta-parameters
DT_SOFTPLUS: tl.constexpr,
TIE_HDIM: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr,
HAS_DT_BIAS: tl.constexpr,
HAS_D: tl.constexpr,
HAS_Z: tl.constexpr,
BLOCK_SIZE_DSTATE: tl.constexpr,
):
pid_m = tl.program_id(axis=0)
pid_b = tl.program_id(axis=1)
pid_h = tl.program_id(axis=2)
state_ptr += pid_b * stride_state_batch + pid_h * stride_state_head
x_ptr += pid_b * stride_x_batch + pid_h * stride_x_head
dt_ptr += pid_b * stride_dt_batch + pid_h * stride_dt_head
if HAS_DT_BIAS:
dt_bias_ptr += pid_h * stride_dt_bias_head
A_ptr += pid_h * stride_A_head
B_ptr += pid_b * stride_B_batch + (pid_h //
nheads_ngroups_ratio) * stride_B_group
C_ptr += pid_b * stride_C_batch + (pid_h //
nheads_ngroups_ratio) * stride_C_group
if HAS_Z:
z_ptr += pid_b * stride_z_batch + pid_h * stride_z_head
out_ptr += pid_b * stride_out_batch + pid_h * stride_out_head
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = tl.arange(0, BLOCK_SIZE_DSTATE)
state_ptrs = state_ptr + (offs_m[:, None] * stride_state_dim +
offs_n[None, :] * stride_state_dstate)
x_ptrs = x_ptr + offs_m * stride_x_dim
dt_ptrs = dt_ptr + offs_m * stride_dt_dim
if HAS_DT_BIAS:
dt_bias_ptrs = dt_bias_ptr + offs_m * stride_dt_bias_dim
if HAS_D:
D_ptr += pid_h * stride_D_head
A_ptrs = A_ptr + (offs_m[:, None] * stride_A_dim +
offs_n[None, :] * stride_A_dstate)
B_ptrs = B_ptr + offs_n * stride_B_dstate
C_ptrs = C_ptr + offs_n * stride_C_dstate
if HAS_D:
D_ptrs = D_ptr + offs_m * stride_D_dim
if HAS_Z:
z_ptrs = z_ptr + offs_m * stride_z_dim
out_ptrs = out_ptr + offs_m * stride_out_dim
state = tl.load(state_ptrs,
mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate),
other=0.0)
x = tl.load(x_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
if not TIE_HDIM:
dt = tl.load(dt_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
if HAS_DT_BIAS:
dt += tl.load(dt_bias_ptrs, mask=offs_m < dim,
other=0.0).to(tl.float32)
if DT_SOFTPLUS:
dt = softplus(dt)
A = tl.load(A_ptrs,
mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate),
other=0.0).to(tl.float32)
dA = tl.exp(A * dt[:, None])
else:
dt = tl.load(dt_ptr).to(tl.float32)
if HAS_DT_BIAS:
dt += tl.load(dt_bias_ptr).to(tl.float32)
if DT_SOFTPLUS:
dt = softplus(dt)
A = tl.load(A_ptr).to(tl.float32)
dA = tl.exp(A * dt) # scalar, not a matrix
B = tl.load(B_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
C = tl.load(C_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
if HAS_D:
D = tl.load(D_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
if HAS_Z:
z = tl.load(z_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
dB = B[None, :] * dt[:, None] if not TIE_HDIM else B * dt
state = state * dA + dB * x[:, None]
tl.store(state_ptrs,
state,
mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate))
out = tl.sum(state * C[None, :], axis=1)
if HAS_D:
out += x * D
if HAS_Z:
out *= z * tl.sigmoid(z)
tl.store(out_ptrs, out, mask=offs_m < dim)
def selective_state_update(state,
x,
dt,
A,
B,
C,
D=None,
z=None,
dt_bias=None,
dt_softplus=False):
"""
Argument:
state: (batch, dim, dstate) or (batch, nheads, dim, dstate)
x: (batch, dim) or (batch, nheads, dim)
dt: (batch, dim) or (batch, nheads, dim)
A: (dim, dstate) or (nheads, dim, dstate)
B: (batch, dstate) or (batch, ngroups, dstate)
C: (batch, dstate) or (batch, ngroups, dstate)
D: (dim,) or (nheads, dim)
z: (batch, dim) or (batch, nheads, dim)
dt_bias: (dim,) or (nheads, dim)
Return:
out: (batch, dim) or (batch, nheads, dim)
"""
has_heads = state.dim() > 3
if state.dim() == 3:
state = state.unsqueeze(1)
if x.dim() == 2:
x = x.unsqueeze(1)
if dt.dim() == 2:
dt = dt.unsqueeze(1)
if A.dim() == 2:
A = A.unsqueeze(0)
if B.dim() == 2:
B = B.unsqueeze(1)
if C.dim() == 2:
C = C.unsqueeze(1)
if D is not None and D.dim() == 1:
D = D.unsqueeze(0)
if z is not None and z.dim() == 2:
z = z.unsqueeze(1)
if dt_bias is not None and dt_bias.dim() == 1:
dt_bias = dt_bias.unsqueeze(0)
batch, nheads, dim, dstate = state.shape
assert x.shape == (batch, nheads, dim)
assert dt.shape == x.shape
assert A.shape == (nheads, dim, dstate)
ngroups = B.shape[1]
assert nheads % ngroups == 0, "nheads must be divisible by ngroups"
assert B.shape == (batch, ngroups, dstate)
assert C.shape == B.shape
if D is not None:
assert D.shape == (nheads, dim)
if z is not None:
assert z.shape == x.shape
if dt_bias is not None:
assert dt_bias.shape == (nheads, dim)
out = torch.empty_like(x)
grid = lambda META: (triton.cdiv(dim, META['BLOCK_SIZE_M']), batch, nheads)
z_strides = ((z.stride(0), z.stride(1), z.stride(2)) if z is not None else
(0, 0, 0))
# We don't want autotune since it will overwrite the state
# We instead tune by hand.
BLOCK_SIZE_M, num_warps = ((32, 4) if dstate <= 16 else
((16, 4) if dstate <= 32 else
((8, 4) if dstate <= 64 else
((4, 4) if dstate <= 128 else ((4, 8))))))
tie_hdim = A.stride(-1) == 0 and A.stride(-2) == 0 and dt.stride(
-1) == 0 and dt_bias.stride(-1) == 0
with torch.cuda.device(x.device.index):
_selective_scan_update_kernel[grid](
state,
x,
dt,
dt_bias,
A,
B,
C,
D,
z,
out,
batch,
nheads,
dim,
dstate,
nheads // ngroups,
state.stride(0),
state.stride(1),
state.stride(2),
state.stride(3),
x.stride(0),
x.stride(1),
x.stride(2),
dt.stride(0),
dt.stride(1),
dt.stride(2),
*(dt_bias.stride(0),
dt_bias.stride(1)) if dt_bias is not None else 0,
A.stride(0),
A.stride(1),
A.stride(2),
B.stride(0),
B.stride(1),
B.stride(2),
C.stride(0),
C.stride(1),
C.stride(2),
*(D.stride(0), D.stride(1)) if D is not None else 0,
z_strides[0],
z_strides[1],
z_strides[2],
out.stride(0),
out.stride(1),
out.stride(2),
dt_softplus,
tie_hdim,
BLOCK_SIZE_M,
num_warps=num_warps,
)
if not has_heads:
out = out.squeeze(1)
return out
def selective_scan_fn(u,
delta,
A,
B,
C,
D=None,
z=None,
delta_bias=None,
delta_softplus=False,
return_last_state=False,
position_indices=None,
prev_state=None):
"""if return_last_state is True, returns (out, last_state)
last_state has shape (batch, dim, dstate).
"""
if u.stride(-1) != 1:
u = u.contiguous()
if delta.stride(-1) != 1:
delta = delta.contiguous()
if D is not None:
D = D.contiguous()
if B.stride(-1) != 1:
B = B.contiguous()
if C.stride(-1) != 1:
C = C.contiguous()
if z is not None and z.stride(-1) != 1:
z = z.contiguous()
if B.dim() == 3:
B = B.unsqueeze(1)
if C.dim() == 3:
C = C.unsqueeze(1)
n_chunks = int((u.shape[-1] + 2048 - 1) / 2048)
x = torch.zeros((
u.shape[0],
u.shape[1],
n_chunks,
int(A.shape[1] * 2),
),
device=u.device,
dtype=torch.float32,
requires_grad=False)
x[:, :, 0, 0::2] = 1
if prev_state is not None:
x[:, :, 0, 1::2].copy_(prev_state)
out, x, *rest = ops.selective_scan_fwd(u, delta, A, B, C, D, z, delta_bias,
delta_softplus, position_indices, x)
last_state = x[:, :, -1, 1::2] # (batch, dim, dstate)
if z is None:
return out if not return_last_state else (out, last_state)
else:
out_z = rest[0]
return out_z if not return_last_state else (out_z, last_state)

View File

@ -4,9 +4,6 @@ from dataclasses import dataclass
from typing import Dict, Iterable, List, Optional, Tuple
import torch
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from torch import nn
from torch.nn.parameter import Parameter
from transformers import JambaConfig
@ -24,6 +21,10 @@ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
causal_conv1d_fn, causal_conv1d_update)
from vllm.model_executor.layers.mamba.ops.mamba_ssm import (
selective_scan_fn, selective_state_update)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.sampler import Sampler
@ -161,7 +162,7 @@ class JambaMambaMixer(nn.Module):
(self.conv_kernel_size - hidden_states.shape[-1], 0))
cache_params.conv_state.copy_(conv_states)
hidden_states = causal_conv1d_fn(
hidden_states, _ = causal_conv1d_fn(
hidden_states,
conv_weights,
self.conv1d.bias,