[Model] Add Qwen2-Audio model support (#9248)

Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
Yunfei Chu 2024-10-24 01:54:22 +08:00 committed by GitHub
parent 150b779081
commit fc6c274626
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 515 additions and 17 deletions

View File

@ -459,6 +459,12 @@ Text Generation
- :code:`Qwen/Qwen-VL`, :code:`Qwen/Qwen-VL-Chat`, etc.
-
- ✅︎
* - :code:`Qwen2AudioForConditionalGeneration`
- Qwen2-Audio
- T + A\ :sup:`+`
- :code:`Qwen/Qwen2-Audio-7B-Instruct`
-
- ✅︎
* - :code:`Qwen2VLForConditionalGeneration`
- Qwen2-VL
- T + I\ :sup:`E+` + V\ :sup:`+`

View File

@ -12,14 +12,15 @@ from vllm.assets.audio import AudioAsset
from vllm.utils import FlexibleArgumentParser
audio_assets = [AudioAsset("mary_had_lamb"), AudioAsset("winning_call")]
question_per_audio_count = [
"What is recited in the audio?",
"What sport and what nursery rhyme are referenced?"
]
question_per_audio_count = {
0: "What is 1+1?",
1: "What is recited in the audio?",
2: "What sport and what nursery rhyme are referenced?"
}
# Ultravox 0.3
def run_ultravox(question, audio_count):
def run_ultravox(question: str, audio_count: int):
model_name = "fixie-ai/ultravox-v0_3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
@ -42,9 +43,29 @@ def run_ultravox(question, audio_count):
return llm, prompt, stop_token_ids
model_example_map = {
"ultravox": run_ultravox,
}
# Qwen2-Audio
def run_qwen2_audio(question: str, audio_count: int):
model_name = "Qwen/Qwen2-Audio-7B-Instruct"
llm = LLM(model=model_name,
max_model_len=4096,
max_num_seqs=5,
limit_mm_per_prompt={"audio": audio_count})
audio_in_prompt = "".join([
f"Audio {idx+1}: "
f"<|audio_bos|><|AUDIO|><|audio_eos|>\n" for idx in range(audio_count)
])
prompt = ("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
"<|im_start|>user\n"
f"{audio_in_prompt}{question}<|im_end|>\n"
"<|im_start|>assistant\n")
stop_token_ids = None
return llm, prompt, stop_token_ids
model_example_map = {"ultravox": run_ultravox, "qwen2_audio": run_qwen2_audio}
def main(args):
@ -54,7 +75,7 @@ def main(args):
audio_count = args.num_audios
llm, prompt, stop_token_ids = model_example_map[model](
question_per_audio_count[audio_count - 1], audio_count)
question_per_audio_count[audio_count], audio_count)
# We set temperature to 0.2 so that outputs can be different
# even when all prompts are identical when running batch inference.
@ -62,16 +83,17 @@ def main(args):
max_tokens=64,
stop_token_ids=stop_token_ids)
assert args.num_prompts > 0
inputs = {
"prompt": prompt,
"multi_modal_data": {
mm_data = {}
if audio_count > 0:
mm_data = {
"audio": [
asset.audio_and_sample_rate
for asset in audio_assets[:audio_count]
]
},
}
}
assert args.num_prompts > 0
inputs = {"prompt": prompt, "multi_modal_data": mm_data}
if args.num_prompts > 1:
# Batch inference
inputs = [inputs] * args.num_prompts
@ -100,7 +122,7 @@ if __name__ == "__main__":
parser.add_argument("--num-audios",
type=int,
default=1,
choices=[1, 2],
choices=[0, 1, 2],
help="Number of audio items per prompt.")
args = parser.parse_args()

View File

@ -199,6 +199,7 @@ MULTIMODAL_MODEL_SETTINGS = {
"microsoft/Phi-3-vision-128k-instruct": PPTestSettings.fast(trust_remote_code=True), # noqa: E501
"mistralai/Pixtral-12B-2409": PPTestSettings.fast(tp_base=2, tokenizer_mode="mistral"), # noqa: E501
"Qwen/Qwen-VL-Chat": PPTestSettings.fast(trust_remote_code=True),
"Qwen/Qwen2-Audio-7B-Instruct": PPTestSettings.fast(),
"Qwen/Qwen2-VL-2B-Instruct": PPTestSettings.fast(),
"fixie-ai/ultravox-v0_3": PPTestSettings.fast(),
}

View File

@ -196,7 +196,10 @@ class BaseMultiModalItemTracker(ABC, Generic[_T]):
elif modality == "audio":
if model_type == "ultravox":
return "<|reserved_special_token_0|>"
raise TypeError(f"Unknown {modality} model type: {model_type}")
if model_type == "qwen2_audio":
return (f"Audio {current_count}: "
f"<|audio_bos|><|AUDIO|><|audio_eos|>")
raise TypeError(f"Unknown model type: {model_type}")
elif modality == "video":
if model_type == "qwen2_vl":
return "<|vision_start|><|video_pad|><|vision_end|>"

View File

@ -0,0 +1,462 @@
# coding=utf-8
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2-Audio model compatible with HuggingFace weights."""
from functools import lru_cache
from typing import Iterable, List, Mapping, Optional, Tuple, TypedDict, Union
import librosa
import numpy as np
import torch
import torch.nn as nn
from transformers import Qwen2AudioConfig, Qwen2AudioEncoder
from vllm.attention import AttentionMetadata
from vllm.config import CacheConfig, MultiModalConfig
from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, InputContext,
token_inputs)
from vllm.logger import init_logger
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.models.qwen2 import Qwen2Model
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalInputs
from vllm.sequence import IntermediateTensors, SequenceData
from .interfaces import SupportsMultiModal, SupportsPP
logger = init_logger(__name__)
_KEYS_TO_MODIFY_MAPPING = {
"language_model.lm_head": "lm_head",
"language_model.model": "language_model",
}
# # === Audio Inputs === #
class Qwen2AudioInputs(TypedDict):
input_features: torch.Tensor
"""Shape:
`(num_audios, num_mel_bins, 3000)`
"""
feature_attention_mask: torch.Tensor
"""Shape: `(num_audios, 3000)`
"""
# === Audio Encoder === #
class Qwen2AudioMultiModalProjector(nn.Module):
def __init__(self, audio_hidden_size: int, text_hidden_size: int):
super().__init__()
self.linear = nn.Linear(audio_hidden_size, text_hidden_size, bias=True)
def forward(self, audio_features):
hidden_states = self.linear(audio_features)
return hidden_states
def dummy_data_for_qwen2_audio(ctx: InputContext, seq_len: int,
mm_counts: Mapping[str, int]):
num_audios = mm_counts["audio"]
max_llm_audio_tokens = get_max_qwen2_audio_audio_tokens(ctx) * num_audios
if seq_len - max_llm_audio_tokens - 2 < 0:
raise RuntimeError(
f"Qwen2-Audio cannot process {num_audios} audios in a prompt, "
"please increase max_model_len or reduce audio limit by "
"--limit-mm-per-prompt.")
audio_token_index = ctx.model_config.hf_config.audio_token_index
dummy_seqdata = SequenceData.from_prompt_token_counts(
(audio_token_index, max_llm_audio_tokens),
(0, seq_len - max_llm_audio_tokens),
)
dummy_audio = np.full((max_llm_audio_tokens * 2 * 2 * 160, ), 0.)
return dummy_seqdata, {"audio": [(dummy_audio, 16000)] * num_audios}
def get_processor(
processor_name: str,
*args,
trust_remote_code: bool = False,
**kwargs,
):
"""Gets a processor for the given model name via HuggingFace.
Derived from `vllm.transformers_utils.image_processor.get_image_processor`.
"""
# don't put this import at the top level
# it will call torch.cuda.device_count()
from transformers import AutoProcessor
try:
processor = AutoProcessor.from_pretrained(
processor_name,
*args,
trust_remote_code=trust_remote_code,
**kwargs)
except ValueError as e:
# If the error pertains to the processor class not existing or not
# currently being imported, suggest using the --trust-remote-code flag.
# Unlike AutoTokenizer, AutoProcessor does not separate such errors
if not trust_remote_code:
err_msg = (
"Failed to load the processor. If the processor is "
"a custom processor not yet available in the HuggingFace "
"transformers library, consider setting "
"`trust_remote_code=True` in LLM or using the "
"`--trust-remote-code` flag in the CLI.")
raise RuntimeError(err_msg) from e
else:
raise e
return processor
cached_get_processor = lru_cache(get_processor)
def _get_feat_extract_output_lengths(input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
and the output length of the audio encoder
"""
input_lengths = (input_lengths - 1) // 2 + 1
output_lengths = (input_lengths - 2) // 2 + 1
return input_lengths, output_lengths
def get_max_qwen2_audio_audio_tokens(ctx: InputContext) -> int:
max_source_position = (
ctx.model_config.hf_config.audio_config.max_source_positions)
output_lengths = (max_source_position - 2) // 2 + 1
return output_lengths
def input_processor_for_qwen2_audio(
ctx: InputContext, inputs: DecoderOnlyInputs) -> DecoderOnlyInputs:
multi_modal_data = inputs.get("multi_modal_data")
if multi_modal_data is None or "audio" not in multi_modal_data:
return inputs
audios = multi_modal_data["audio"]
if not isinstance(audios, list):
audios = [audios]
if len(audios) == 0:
return inputs
processor = cached_get_processor(ctx.model_config.model)
resampled_audios = [
librosa.resample(audio,
orig_sr=sampling_rate,
target_sr=processor.feature_extractor.sampling_rate)
for audio, sampling_rate in audios
]
audio_input_lengths = np.array(
[min(3000, _.shape[0] // 160 + 1) for _ in resampled_audios])
audio_feat_lengths, audio_output_lengths = _get_feat_extract_output_lengths(
audio_input_lengths)
audio_token_index = ctx.model_config.hf_config.audio_token_index
input_ids = inputs['prompt_token_ids']
new_input_ids = []
audio_num = input_ids.count(audio_token_index)
assert len(audio_input_lengths) == audio_num, \
(f'The text input contains {audio_num} audio tokens, '
f'but {len(audio_input_lengths)} audios provided')
start = 0
for audio_idx in range(audio_num):
end = input_ids.index(audio_token_index, start)
new_input_ids.extend(input_ids[start:end]) # text part
new_input_ids.extend([audio_token_index] *
audio_output_lengths[audio_idx])
start = end + 1
new_input_ids.extend(input_ids[start:])
return token_inputs(
prompt_token_ids=new_input_ids,
prompt=inputs['prompt'],
multi_modal_data=multi_modal_data,
)
def input_mapper_for_qwen2_audio(
ctx: InputContext,
multi_modal_data: Union[np.ndarray, List[np.ndarray]],
) -> MultiModalInputs:
"""Input mapper for Qwen2-Audio."""
if not isinstance(multi_modal_data, list):
multi_modal_data = [multi_modal_data]
if len(multi_modal_data) == 0:
return MultiModalInputs()
processor = cached_get_processor(ctx.model_config.model)
audio_feature_extractor = processor.feature_extractor
if audio_feature_extractor is None:
raise RuntimeError(
"No HuggingFace audio_feature_extractor is available "
"to process the audio object")
try:
resampled_audios = [
librosa.resample(
audio,
orig_sr=sampling_rate,
target_sr=processor.feature_extractor.sampling_rate)
for audio, sampling_rate in multi_modal_data
]
batch_data = audio_feature_extractor(resampled_audios,
sampling_rate=16000,
return_attention_mask=True,
padding="max_length",
return_tensors="pt").data
batch_data["feature_attention_mask"] = batch_data.pop("attention_mask")
except Exception:
logger.error("Failed to process audio (%s)", multi_modal_data)
raise
return MultiModalInputs(batch_data)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_qwen2_audio)
@INPUT_REGISTRY.register_input_processor(input_processor_for_qwen2_audio)
@MULTIMODAL_REGISTRY.register_input_mapper("audio",
input_mapper_for_qwen2_audio)
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens(
"audio", get_max_qwen2_audio_audio_tokens)
class Qwen2AudioForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsPP):
def __init__(self,
config: Qwen2AudioConfig,
multimodal_config: MultiModalConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
self.config = config
self.multimodal_config = multimodal_config
self.audio_tower = Qwen2AudioEncoder(config.audio_config)
self.multi_modal_projector = Qwen2AudioMultiModalProjector(
config.audio_config.d_model, config.text_config.hidden_size)
self.quant_config = quant_config
self.language_model = Qwen2Model(config.text_config, cache_config,
quant_config)
self.unpadded_vocab_size = config.text_config.vocab_size
if config.text_config.tie_word_embeddings:
self.lm_head = self.language_model.embed_tokens
else:
self.lm_head = ParallelLMHead(config.text_config.vocab_size,
config.text_config.hidden_size,
quant_config=quant_config)
logit_scale = getattr(config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.text_config.vocab_size,
logit_scale)
self.sampler = Sampler()
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
def _validate_and_reshape_mm_tensor(self,
mm_input: Union[torch.Tensor,
List[torch.Tensor]],
name: str) -> torch.Tensor:
if not isinstance(mm_input, (torch.Tensor, list)):
raise ValueError(f"Incorrect type of {name}. "
f"Got type: {type(mm_input)}")
if isinstance(mm_input, torch.Tensor):
return torch.concat(list(mm_input))
else:
return torch.concat(mm_input)
def _parse_and_validate_audio_input(
self, **kwargs: object) -> Optional[Qwen2AudioInputs]:
input_features = kwargs.pop('input_features', None)
feature_attention_mask = kwargs.pop('feature_attention_mask', None)
if input_features is None:
return None
input_features = self._validate_and_reshape_mm_tensor(
input_features, 'input_features')
feature_attention_mask = self._validate_and_reshape_mm_tensor(
feature_attention_mask, 'feature_attention_mask')
if not isinstance(input_features, (torch.Tensor, list)):
raise ValueError("Incorrect type of audio input features. "
f"Got type: {type(input_features)}")
return Qwen2AudioInputs(input_features=input_features,
feature_attention_mask=feature_attention_mask)
def _process_audio_input(self,
audio_input: Qwen2AudioInputs) -> torch.Tensor:
input_features = audio_input["input_features"]
feature_attention_mask = audio_input["feature_attention_mask"]
audio_feat_lengths, audio_output_lengths = (
self.audio_tower._get_feat_extract_output_lengths(
feature_attention_mask.sum(-1)))
batch_size, _, max_mel_seq_len = input_features.shape
max_seq_len = (max_mel_seq_len - 2) // 2 + 1
# Create a sequence tensor of shape (batch_size, max_seq_len)
seq_range = (torch.arange(
0,
max_seq_len,
dtype=audio_feat_lengths.dtype,
device=audio_feat_lengths.device).unsqueeze(0).expand(
batch_size, max_seq_len))
lengths_expand = audio_feat_lengths.unsqueeze(-1).expand(
batch_size, max_seq_len)
# Create mask
padding_mask = seq_range >= lengths_expand
audio_attention_mask_ = padding_mask.view(
batch_size, 1, 1, max_seq_len).expand(batch_size, 1, max_seq_len,
max_seq_len)
audio_attention_mask = audio_attention_mask_.to(
dtype=self.audio_tower.conv1.weight.dtype,
device=self.audio_tower.conv1.weight.device)
audio_attention_mask[audio_attention_mask_] = float("-inf")
audio_outputs = self.audio_tower(input_features,
attention_mask=audio_attention_mask)
selected_audio_feature = audio_outputs.last_hidden_state
audio_features = self.multi_modal_projector(selected_audio_feature)
num_audios, max_audio_tokens, embed_dim = audio_features.shape
audio_features_mask = torch.arange(max_audio_tokens).expand(
num_audios, max_audio_tokens
).to(audio_output_lengths.device) < audio_output_lengths.unsqueeze(1)
masked_audio_features = audio_features[audio_features_mask].view(
-1, embed_dim)
return masked_audio_features
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
if intermediate_tensors is not None:
input_ids = None
inputs_embeds = None
else:
audio_input = self._parse_and_validate_audio_input(**kwargs)
if audio_input is None:
inputs_embeds = None
else:
inputs_embeds = self.language_model.embed_tokens(input_ids)
masked_audio_features = self._process_audio_input(audio_input)
# merge llm embeddings and audio features
mask = (input_ids == self.config.audio_token_index)
inputs_embeds[mask, :] = masked_audio_features
input_ids = None
hidden_states = self.language_model(
input_ids=input_ids,
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if (self.config.text_config.tie_word_embeddings
and "lm_head.weight" in name):
continue
for key_to_modify, new_key in _KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in name:
name = name.replace(key_to_modify, new_key)
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name or 'audio' in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)

View File

@ -121,6 +121,7 @@ _MULTIMODAL_MODELS = {
"PixtralForConditionalGeneration": ("pixtral", "PixtralForConditionalGeneration"), # noqa: E501
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
"Qwen2VLForConditionalGeneration": ("qwen2_vl", "Qwen2VLForConditionalGeneration"), # noqa: E501
"Qwen2AudioForConditionalGeneration": ("qwen2_audio", "Qwen2AudioForConditionalGeneration"), # noqa: E501
"UltravoxModel": ("ultravox", "UltravoxModel"),
# [Encoder-decoder]
"MllamaForConditionalGeneration": ("mllama", "MllamaForConditionalGeneration"), # noqa: E501

View File

@ -117,6 +117,9 @@ def input_mapper_for_ultravox(ctx: InputContext, data: object):
if not isinstance(data, list):
data = [data]
if len(data) == 0:
return MultiModalInputs()
# If the audio inputs are embeddings, no need for preprocessing
if is_list_of(data, torch.Tensor, check="all"):
return MultiModalInputs({"audio_embeds": data})