[TPU][V1] Remove ragged attention kernel parameter hard coding (#16041)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
This commit is contained in:
parent
86cbd2eee9
commit
fadc59c0e6
@ -11,10 +11,6 @@ from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
||||
AttentionLayer, AttentionType)
|
||||
from vllm.attention.backends.utils import CommonAttentionState
|
||||
|
||||
# These are the 2 tunable parameters of the paged attention Pallas kernel.
|
||||
NUM_QUERIES_PER_BLOCK = 32
|
||||
NUM_KV_PAGES_PER_BLOCK = 128
|
||||
|
||||
|
||||
class PallasAttentionBackend(AttentionBackend):
|
||||
|
||||
@ -115,13 +111,6 @@ class PallasAttentionBackendImpl(AttentionImpl):
|
||||
tpu_version = torch_xla.tpu.version()
|
||||
if tpu_version < 4:
|
||||
raise NotImplementedError("TPU version must be 4 or higher.")
|
||||
# NOTE(chengjiyao): the TPU v4's vmem capacity is 16MB
|
||||
# TODO(chengjiyao): autotune NUM_QUERIES_PER_BLOCK,
|
||||
# NUM_KV_PAGES_PER_BLOCK and vmem_limit_bytes
|
||||
if tpu_version == 4:
|
||||
self.vmem_limit_bytes = 16 * 1024 * 1024
|
||||
else:
|
||||
self.vmem_limit_bytes = 64 * 1024 * 1024
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -165,9 +154,12 @@ class PallasAttentionBackendImpl(AttentionImpl):
|
||||
attn_metadata.block_tables,
|
||||
attn_metadata.query_start_loc,
|
||||
attn_metadata.num_seqs,
|
||||
num_kv_pages_per_block=NUM_KV_PAGES_PER_BLOCK,
|
||||
num_queries_per_block=NUM_QUERIES_PER_BLOCK,
|
||||
vmem_limit_bytes=self.vmem_limit_bytes,
|
||||
# By default, the system utilizes optimized block size and
|
||||
# vmem_limit_bytes parameters from the kernel repository. However,
|
||||
# these can be manually adjusted for debugging if necessary.
|
||||
num_kv_pages_per_block=None,
|
||||
num_queries_per_block=None,
|
||||
vmem_limit_bytes=None,
|
||||
use_kernel=True,
|
||||
sm_scale=self.scale,
|
||||
sliding_window=self.sliding_window,
|
||||
|
@ -24,8 +24,7 @@ from vllm.multimodal.utils import group_mm_inputs_by_modality
|
||||
from vllm.sampling_params import SamplingType
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils import LayerBlockType, cdiv, is_pin_memory_available
|
||||
from vllm.v1.attention.backends.pallas import (NUM_KV_PAGES_PER_BLOCK,
|
||||
PallasAttentionBackend,
|
||||
from vllm.v1.attention.backends.pallas import (PallasAttentionBackend,
|
||||
PallasMetadata)
|
||||
from vllm.v1.core.encoder_cache_manager import compute_encoder_budget
|
||||
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig,
|
||||
@ -155,11 +154,8 @@ class TPUModelRunner:
|
||||
dtype=torch.int64,
|
||||
device="cpu")
|
||||
self.slot_mapping_np = self.slot_mapping_cpu.numpy()
|
||||
|
||||
padded_max_num_blocks_per_req = _get_padded_number(
|
||||
self.max_num_blocks_per_req, NUM_KV_PAGES_PER_BLOCK)
|
||||
self.block_table_cpu = torch.zeros(
|
||||
(self.max_num_tokens, padded_max_num_blocks_per_req),
|
||||
(self.max_num_tokens, self.max_num_blocks_per_req),
|
||||
dtype=self.input_batch.block_table.get_cpu_tensor().dtype,
|
||||
device="cpu")
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user