[Bugfix] Fix GPTQ and GPTQ Marlin CPU Offloading (#7225)
This commit is contained in:
parent
fd95e026e0
commit
f9a5600649
@ -22,11 +22,28 @@ def test_cpu_offload_fp8():
|
||||
["--cpu-offload-gb", "2"])
|
||||
|
||||
|
||||
@pytest.mark.skipif(not is_quant_method_supported("awq"),
|
||||
reason="awq is not supported on this GPU type.")
|
||||
@pytest.mark.skipif(not is_quant_method_supported("gptq_marlin"),
|
||||
reason="gptq_marlin is not supported on this GPU type.")
|
||||
def test_cpu_offload_gptq():
|
||||
# Test GPTQ Marlin
|
||||
compare_two_settings("Qwen/Qwen2-1.5B-Instruct-GPTQ-Int4", [],
|
||||
["--cpu-offload-gb", "1"])
|
||||
# Test GPTQ
|
||||
compare_two_settings("Qwen/Qwen2-1.5B-Instruct-GPTQ-Int4",
|
||||
["--quantization", "gptq"],
|
||||
["--quantization", "gptq", "--cpu-offload-gb", "1"])
|
||||
|
||||
|
||||
@pytest.mark.skipif(not is_quant_method_supported("awq_marlin"),
|
||||
reason="awq_marlin is not supported on this GPU type.")
|
||||
def test_cpu_offload_awq():
|
||||
compare_two_settings("casperhansen/llama-3-8b-instruct-awq", [],
|
||||
["--cpu-offload-gb", "2"])
|
||||
# Test AWQ Marlin
|
||||
compare_two_settings("Qwen/Qwen2-1.5B-Instruct-AWQ", [],
|
||||
["--cpu-offload-gb", "1"])
|
||||
# Test AWQ
|
||||
compare_two_settings("Qwen/Qwen2-1.5B-Instruct-AWQ",
|
||||
["--quantization", "awq"],
|
||||
["--quantization", "awq", "--cpu-offload-gb", "1"])
|
||||
|
||||
|
||||
@pytest.mark.skipif(not is_quant_method_supported("gptq_marlin"),
|
||||
|
@ -266,8 +266,9 @@ def compare_two_settings(model: str,
|
||||
arg1_results = results[:n]
|
||||
arg2_results = results[n:]
|
||||
for arg1_result, arg2_result in zip(arg1_results, arg2_results):
|
||||
assert arg1_result == arg2_result, \
|
||||
f"Results for {model=} are not the same with {arg1=} and {arg2=}"
|
||||
assert arg1_result == arg2_result, (
|
||||
f"Results for {model=} are not the same with {arg1=} and {arg2=}. "
|
||||
f"{arg1_result=} != {arg2_result=}")
|
||||
|
||||
|
||||
def init_test_distributed_environment(
|
||||
|
@ -204,13 +204,7 @@ class GPTQLinearMethod(LinearMethodBase):
|
||||
|
||||
layer.exllama_state = exllama_state
|
||||
|
||||
def apply(self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
qweight = layer.qweight
|
||||
out_shape = x.shape[:-1] + (qweight.shape[-1], )
|
||||
reshaped_x = x.reshape(-1, x.shape[-1])
|
||||
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
||||
# exllama needs to shuffle the weight after the weight is loaded
|
||||
# here we do the shuffle on first forward pass
|
||||
if layer.exllama_state == ExllamaState.UNINITIALIZED:
|
||||
@ -222,6 +216,14 @@ class GPTQLinearMethod(LinearMethodBase):
|
||||
layer.exllama_state = ExllamaState.READY
|
||||
ops.gptq_shuffle(layer.qweight, layer.g_idx,
|
||||
self.quant_config.weight_bits)
|
||||
|
||||
def apply(self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
out_shape = x.shape[:-1] + (layer.qweight.shape[-1], )
|
||||
reshaped_x = x.reshape(-1, x.shape[-1])
|
||||
|
||||
output = ops.gptq_gemm(reshaped_x, layer.qweight, layer.qzeros,
|
||||
layer.scales, layer.g_idx,
|
||||
layer.exllama_state == ExllamaState.READY,
|
||||
|
@ -251,7 +251,6 @@ class GPTQMarlinLinearMethod(LinearMethodBase):
|
||||
scales_and_zp_size,
|
||||
output_size_per_partition // self.quant_config.pack_factor,
|
||||
dtype=torch.int32,
|
||||
device="meta",
|
||||
),
|
||||
requires_grad=False,
|
||||
)
|
||||
|
Loading…
x
Reference in New Issue
Block a user