[Model] Initialize support for Deepseek-VL2 models (#11578)

Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
This commit is contained in:
Isotr0py 2025-01-12 16:17:24 +08:00 committed by GitHub
parent 43f3d9e699
commit f967e51f38
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
17 changed files with 1050 additions and 9 deletions

View File

@ -52,6 +52,7 @@ steps:
- tests/worker
- tests/standalone_tests/lazy_torch_compile.py
commands:
- pip install git+https://github.com/Isotr0py/DeepSeek-VL2.git # Used by multimoda processing test
- python3 standalone_tests/lazy_torch_compile.py
- pytest -v -s mq_llm_engine # MQLLMEngine
- pytest -v -s async_engine # AsyncLLMEngine

View File

@ -610,6 +610,13 @@ See [this page](#generative-models) for more information on how to use generativ
-
- ✅︎
- ✅︎
* - `DeepseekVLV2ForCausalLM`
- DeepSeek-VL2
- T + I<sup>+</sup>
- `deepseek-ai/deepseek-vl2-tiny`(WIP), `deepseek-ai/deepseek-vl2-small`, `deepseek-ai/deepseek-vl2` etc. (see note)
-
- ✅︎
- ✅︎
* - `FuyuForCausalLM`
- Fuyu
- T + I
@ -755,8 +762,19 @@ See [this page](#generative-models) for more information on how to use generativ
<sup>E</sup> Pre-computed embeddings can be inputted for this modality.
<sup>+</sup> Multiple items can be inputted per text prompt for this modality.
````{note}
The `deepseek-ai/deepseek-vl2-tiny` is not supported yet.
To use `DeepSeek-VL2` series models, you need to install a fork version `deepseek_vl2` package:
```shell
pip install git+https://github.com/Isotr0py/DeepSeek-VL2.git
```
Besides, to run `DeepSeek-VL2` series models, you have to pass `--hf_overrides '{"architectures": ["DeepseekVLV2ForCausalLM"]}'` when running vLLM.
````
```{note}
To use `TIGER-Lab/Mantis-8B-siglip-llama3`, you have pass `--hf_overrides '{"architectures": ["MantisForConditionalGeneration"]}'` when running vLLM.
To use `TIGER-Lab/Mantis-8B-siglip-llama3`, you have to pass `--hf_overrides '{"architectures": ["MantisForConditionalGeneration"]}'` when running vLLM.
```
```{note}

View File

@ -66,6 +66,23 @@ def run_chameleon(question: str, modality: str):
return llm, prompt, stop_token_ids
# Deepseek-VL2
def run_deepseek_vl2(question: str, modality: str):
assert modality == "image"
model_name = "deepseek-ai/deepseek-vl2-small"
llm = LLM(model=model_name,
max_model_len=4096,
max_num_seqs=2,
disable_mm_preprocessor_cache=args.disable_mm_preprocessor_cache,
hf_overrides={"architectures": ["DeepseekVLV2ForCausalLM"]})
prompt = f"<|User|>: <image>\n{question}\n\n<|Assistant|>:"
stop_token_ids = None
return llm, prompt, stop_token_ids
# Fuyu
def run_fuyu(question: str, modality: str):
assert modality == "image"
@ -498,6 +515,7 @@ model_example_map = {
"aria": run_aria,
"blip-2": run_blip2,
"chameleon": run_chameleon,
"deepseek_vl_v2": run_deepseek_vl2,
"fuyu": run_fuyu,
"glm4v": run_glm4v,
"h2ovl_chat": run_h2ovl,

View File

@ -54,6 +54,28 @@ def load_aria(question, image_urls: List[str]) -> ModelRequestData:
)
def load_deepseek_vl2(question: str, image_urls: List[str]):
model_name = "deepseek-ai/deepseek-vl2-small"
llm = LLM(model=model_name,
max_model_len=4096,
max_num_seqs=2,
hf_overrides={"architectures": ["DeepseekVLV2ForCausalLM"]},
limit_mm_per_prompt={"image": len(image_urls)})
placeholder = "".join(f"image_{i}:<image>\n"
for i, _ in enumerate(image_urls, start=1))
prompt = f"<|User|>: {placeholder}{question}\n\n<|Assistant|>:"
return ModelRequestData(
llm=llm,
prompt=prompt,
stop_token_ids=None,
image_data=[fetch_image(url) for url in image_urls],
chat_template=None,
)
def load_h2onvl(question: str, image_urls: List[str]) -> ModelRequestData:
model_name = "h2oai/h2ovl-mississippi-2b"
@ -372,6 +394,7 @@ def load_qwen2_vl(question, image_urls: List[str]) -> ModelRequestData:
model_example_map = {
"aria": load_aria,
"deepseek_vl2": load_deepseek_vl2,
"h2ovl_chat": load_h2onvl,
"idefics3": load_idefics3,
"internvl_chat": load_internvl,

View File

@ -188,6 +188,33 @@ VLM_TEST_SETTINGS = {
max_tokens=8,
dtype="bfloat16",
),
"deepseek_vl_v2": VLMTestInfo(
models=["deepseek-ai/deepseek-vl2-small"],
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
dtype="bfloat16",
prompt_formatter=lambda img_prompt: f"<|User|>: {img_prompt}\n\n<|Assistant|>: ", # noqa: E501
max_model_len=4096,
max_num_seqs=2,
single_image_prompts=IMAGE_ASSETS.prompts({
"stop_sign": "<image>\nWhat's the color of the stop sign and car?",
"cherry_blossom": "<image>\nWhat's the color of the tower?",
}),
multi_image_prompt="image_1:<image>\nimage_2:<image>\nDescribe the two images shortly.", # noqa: E501
vllm_runner_kwargs={"hf_overrides": {"architectures": ["DeepseekVLV2ForCausalLM"]}}, # noqa: E501
image_size_factors=[(0.10, 0.15)],
patch_hf_runner=model_utils.deepseekvl2_patch_hf_runner,
postprocess_inputs=model_utils.cast_dtype_post_processor("images"),
hf_output_post_proc=model_utils.deepseekvl2_trunc_hf_output,
stop_str=["<end▁of▁sentence>", "<begin▁of▁sentence>"], # noqa: E501
num_logprobs=5,
marks=[
pytest.mark.skipif(
not is_flash_attn_2_available(),
reason="Model needs flash-attn for numeric convergence.",
),
large_gpu_mark(min_gb=48),
],
),
"fuyu": VLMTestInfo(
models=["adept/fuyu-8b"],
test_type=VLMTestType.IMAGE,

View File

@ -183,6 +183,14 @@ def paligemma_vllm_to_hf_output(vllm_output: RunnerOutput,
####### Post-processors for HF outputs
def deepseekvl2_trunc_hf_output(hf_output: RunnerOutput,
model: str) -> RunnerOutput:
output_ids, output_str, out_logprobs = hf_output
if output_str.endswith("<end▁of▁sentence>"):
output_str = output_str.split("<end▁of▁sentence>")[0]
return output_ids, output_str, out_logprobs
def minicpmv_trunc_hf_output(hf_output: RunnerOutput,
model: str) -> RunnerOutput:
output_ids, output_str, out_logprobs = hf_output
@ -261,6 +269,34 @@ def qwen_prompt_path_encoder(
####### Model-specific HuggingFace runner patchers
def deepseekvl2_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
"""Patches and returns an instance of the HfRunner to use for GLM4."""
hf_processor = hf_model.processor
def processor(*args, text="", images=None, **kwargs):
if isinstance(images, Image):
images = [images]
# inputs is a custom class instead of dict or BatchFeature
inputs = hf_processor(
*args,
prompt=text,
images=images,
**kwargs,
)
inputs = {
k: inputs[k]
for k in inputs.keys() # noqa
if k not in ("seq_lens", "sft_format")
}
inputs = BatchEncoding(data=inputs, tensor_type="pt")
return inputs
hf_model.processor = processor
hf_model.model.get_output_embeddings = lambda: \
hf_model.model.language.model.embed_tokens
return hf_model
def glm_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
"""Patches and returns an instance of the HfRunner to use for GLM4."""
hf_processor = hf_model.processor

View File

@ -179,6 +179,8 @@ _MULTIMODAL_EXAMPLE_MODELS = {
trust_remote_code=True),
"ChatGLMForConditionalGeneration": _HfExamplesInfo("chatglm2-6b",
is_available_online=False),
# TODO(Isotr0py): Use deepseek-vl2-tiny for test after it's supported
"DeepseekVLV2ForCausalLM": _HfExamplesInfo("deepseek-ai/deepseek-vl2-small"), # noqa: E501
"FuyuForCausalLM": _HfExamplesInfo("adept/fuyu-8b"),
"H2OVLChatModel": _HfExamplesInfo("h2oai/h2ovl-mississippi-800m"),
"InternVLChatModel": _HfExamplesInfo("OpenGVLab/InternVL2-1B",

View File

@ -26,6 +26,9 @@ def test_can_initialize(model_arch):
# Avoid OOM
def hf_overrides(hf_config: PretrainedConfig) -> PretrainedConfig:
if hf_config.model_type == "deepseek_vl_v2":
hf_config.update({"architectures": ["DeepseekVLV2ForCausalLM"]})
if hasattr(hf_config, "text_config"):
text_config: PretrainedConfig = hf_config.text_config
else:

View File

@ -403,8 +403,8 @@ class BaseMultiModalItemTracker(ABC, Generic[_T]):
if model_type.startswith("llava"):
return self._cached_token_str(self._tokenizer,
hf_config.image_token_index)
if model_type in ("chameleon", "internvl_chat", "NVLM_D",
"h2ovl_chat"):
if model_type in ("chameleon", "deepseek_vl_v2", "internvl_chat",
"NVLM_D", "h2ovl_chat"):
return "<image>"
if model_type == "mllama":
return "<|image|>"

View File

@ -243,7 +243,11 @@ class DeepseekV2Attention(nn.Module):
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj")
rope_scaling["rope_type"] = 'deepseek_yarn'
if rope_scaling:
rope_scaling["rope_type"] = 'deepseek_yarn'
self.use_normal_rope = False
else:
self.use_normal_rope = True
self.rotary_emb = get_rope(qk_rope_head_dim,
rotary_dim=qk_rope_head_dim,
max_position=max_position_embeddings,
@ -298,7 +302,18 @@ class DeepseekV2Attention(nn.Module):
self.qk_nope_head_dim + self.v_head_dim)
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_pe = latent_cache[:, :, self.kv_lora_rank:]
if self.use_normal_rope:
seq_len = positions.size(0)
ori_q_pe_shape, ori_k_pe_shape = q_pe.shape, k_pe.shape
q_pe = q_pe.reshape(seq_len, -1)
k_pe = k_pe.reshape(seq_len, -1)
q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
if self.use_normal_rope:
q_pe, k_pe = q_pe.view(ori_q_pe_shape), k_pe.view(ori_k_pe_shape)
q[..., self.qk_nope_head_dim:] = q_pe
k = torch.empty_like(q)
k[..., :self.qk_nope_head_dim] = k_nope
@ -355,6 +370,7 @@ class DeepseekV2DecoderLayer(nn.Module):
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
if (config.n_routed_experts is not None
and layer_idx >= config.first_k_dense_replace
and layer_idx % config.moe_layer_freq == 0):

View File

@ -251,7 +251,11 @@ class DeepseekV3Attention(nn.Module):
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj")
rope_scaling["rope_type"] = 'deepseek_yarn'
if rope_scaling:
rope_scaling["rope_type"] = 'deepseek_yarn'
self.use_normal_rope = False
else:
self.use_normal_rope = True
self.rotary_emb = get_rope(qk_rope_head_dim,
rotary_dim=qk_rope_head_dim,
max_position=max_position_embeddings,
@ -306,7 +310,18 @@ class DeepseekV3Attention(nn.Module):
self.qk_nope_head_dim + self.v_head_dim)
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_pe = latent_cache[:, :, self.kv_lora_rank:]
if self.use_normal_rope:
seq_len = positions.size(0)
ori_q_pe_shape, ori_k_pe_shape = q_pe.shape, k_pe.shape
q_pe = q_pe.reshape(seq_len, -1)
k_pe = k_pe.reshape(seq_len, -1)
q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
if self.use_normal_rope:
q_pe, k_pe = q_pe.view(ori_q_pe_shape), k_pe.view(ori_k_pe_shape)
q[..., self.qk_nope_head_dim:] = q_pe
k = torch.empty_like(q)
k[..., :self.qk_nope_head_dim] = k_nope
@ -583,7 +598,8 @@ class DeepseekV3ForCausalLM(nn.Module, SupportsPP):
continue
# TODO(simon): support nextn predict layers
if self.config.num_nextn_predict_layers > 0:
if hasattr(self.config, "num_nextn_predict_layers"
) and self.config.num_nextn_predict_layers > 0:
assert self.config.num_nextn_predict_layers == 1
layer_idx = self.config.num_hidden_layers
if name.startswith(f"model.layers.{layer_idx}"):

View File

@ -0,0 +1,662 @@
# adapted from https://github.com/deepseek-ai/DeepSeek-VL2/blob/faf18023f24b962b32d9f0a2d89e402a8d383a78/deepseek_vl2/models/modeling_deepseek_vl_v2.py
"""Inference-only Deepseek-VL2 model compatible with HuggingFace weights."""
import math
from functools import cached_property, partial
from typing import (Iterable, List, Literal, Mapping, Optional, Set, Tuple,
TypedDict, Union)
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers import AutoProcessor, BatchFeature, ProcessorMixin
from vllm.attention import AttentionMetadata
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
NestedTensors)
from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems,
ImageSize, MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.utils import cached_get_tokenizer
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.deepseek_vl2 import (DeepseekVLV2Config,
MlpProjectorConfig,
VisionEncoderConfig)
from vllm.utils import is_list_of
from .interfaces import SupportsMultiModal, SupportsPP
from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
init_vllm_registered_model, maybe_prefix,
merge_multimodal_embeddings)
logger = init_logger(__name__)
# The image token id may be various
_IMAGE_TOKEN = "<image>"
class DeepseekVL2ImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
data: Union[torch.Tensor, List[torch.Tensor]]
"""
Shape: `(batch_size * num_images, num_channels, height, width)`
"""
images_spatial_crop: torch.Tensor
"""
Shape: `(batch_size * num_images, 2)`
"""
class DeepseekVL2VImageEmbeddingInputs(TypedDict):
type: Literal["image_embeds"]
data: Union[torch.Tensor, List[torch.Tensor]]
"""Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
`hidden_size` must match the hidden size of language model backbone.
"""
DeepseekVL2ImageInputs = Union[DeepseekVL2ImagePixelInputs,
DeepseekVL2VImageEmbeddingInputs]
class MlpProjector(nn.Module):
def __init__(self, cfg: MlpProjectorConfig):
super().__init__()
self.cfg = cfg
assert not cfg.token_pooling, (
"Token pooling is not supported currently.")
if cfg.projector_type == "downsample_mlp_gelu":
mlp_depth = cfg.depth
mlp_ratio = cfg.mlp_ratio
modules = [
nn.Linear(
cfg.input_dim * cfg.downsample_ratio *
cfg.downsample_ratio, cfg.n_embed * mlp_ratio)
]
for _ in range(1, mlp_depth - 1):
modules.append(nn.GELU())
modules.append(
nn.Linear(cfg.n_embed * mlp_ratio,
cfg.n_embed * mlp_ratio))
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
modules = nn.Sequential(*modules)
else:
raise NotImplementedError(
f"Unsupported projector type: {cfg.projector_type}")
self.layers = modules
def forward(self, x):
bs, hw, input_dim = x.shape
h = w = int((hw)**0.5)
"""compute padding"""
if h % self.cfg.downsample_ratio:
pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
else:
pad = 0
x = x.reshape(bs, h, w, input_dim)
if pad > 0:
x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
"""4 to 1 concat"""
x = x.permute(0, 3, 1, 2) # B, C, H, W
x = F.unfold(x,
kernel_size=self.cfg.downsample_ratio,
stride=self.cfg.downsample_ratio,
padding=0) # B, C*4, HW // 4
x = x.permute(0, 2, 1)
return self.layers(x)
class DeepseekVL2ProcessingInfo(BaseProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(DeepseekVLV2Config)
def get_hf_processor(self) -> ProcessorMixin:
# TODO(Isotr0py): we should get rid of dependency on deepseek_vl2
# in the future, because it's flasky and lack of maintenance.
try:
from deepseek_vl2.models.processing_deepseek_vl_v2 import (
DeepseekVLV2Processor, select_best_resolution)
AutoProcessor.register("DeepseekVLV2Processor",
DeepseekVLV2Processor)
except ModuleNotFoundError as exc:
raise ModuleNotFoundError(
"You need to `pip install "
"git+https://github.com/deepseek-ai/DeepSeek-VL2.git` "
"to use this model") from exc
processor = self.ctx.get_hf_processor(DeepseekVLV2Processor)
processor.select_best_resolution = partial(
select_best_resolution,
candidate_resolutions=processor.candidate_resolutions)
return processor
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": None}
def get_num_image_tokens(self, *, image_width: int,
image_height: int) -> int:
hf_processor = self.get_hf_processor()
image_size = hf_processor.image_size
patch_size = hf_processor.patch_size
downsample_ratio = hf_processor.downsample_ratio
best_width, best_height = hf_processor.select_best_resolution(
(image_width, image_height))
num_width_tiles, num_height_tiles = (best_width // image_size,
best_height // image_size)
h = w = math.ceil((image_size // patch_size) / downsample_ratio)
global_views_tokens = h * (w + 1)
local_views_tokens = (num_height_tiles * h) * (num_width_tiles * w + 1)
return global_views_tokens + local_views_tokens + 1
def get_image_size_with_most_features(self) -> ImageSize:
hf_config = self.get_hf_config()
candidate_resolutions = hf_config.candidate_resolutions
height, width = max(candidate_resolutions,
key=lambda x: self.get_num_image_tokens(
image_width=x[1], image_height=x[0]))
return ImageSize(width=width, height=height)
def get_mm_max_tokens_per_item(self, seq_len: int) -> Mapping[str, int]:
max_image_size = self.get_image_size_with_most_features()
max_image_tokens = self.get_num_image_tokens(
image_height=max_image_size.height,
image_width=max_image_size.width)
return {"image": max_image_tokens}
class DeepseekVL2DummyInputsBuilder(
BaseDummyInputsBuilder[DeepseekVL2ProcessingInfo]):
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
num_images = mm_counts.get("image", 0)
hf_processor = self.info.get_hf_processor()
image_token: str = hf_processor.image_token
max_image_size = self.info.get_image_size_with_most_features()
mm_data = {
"image":
self._get_dummy_images(width=max_image_size.width,
height=max_image_size.height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
class DeepseekVL2MultiModalProcessor(
BaseMultiModalProcessor[DeepseekVL2ProcessingInfo]):
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
) -> BatchFeature:
if mm_data:
outputs = self.info.ctx.call_hf_processor(
self.info.get_hf_processor(**mm_kwargs),
dict(prompt=prompt, **mm_data),
mm_kwargs,
)
# Deepseek-vl2 processor don't return BatchFeature,
# we need to manually create it
processed_outputs = dict(input_ids=outputs["input_ids"])
processed_outputs = BatchFeature(data=dict(processed_outputs),
tensor_type="pt")
# Remove batch dimension from processor outputs,
# because we will try batch to create NestedTensors
target_dtype = self.info.ctx.model_config.dtype
pixel_values = outputs["images"].to(target_dtype).squeeze(0)
images_spatial_crop = outputs["images_spatial_crop"].squeeze(0)
patches_per_image = [
x.prod().item() + 1 for x in images_spatial_crop
]
# Rename `images` -> `pixel_values` to avoid confusion
processed_outputs["pixel_values"] = list(
pixel_values.split(patches_per_image))
processed_outputs["images_spatial_crop"] = images_spatial_crop
else:
tokenizer = self.info.get_tokenizer()
processed_outputs = tokenizer(prompt,
add_special_tokens=True,
return_tensors="pt")
return processed_outputs
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
pixel_values=MultiModalFieldConfig.batched("image"),
images_spatial_crop=MultiModalFieldConfig.batched("image"),
image_embeds=MultiModalFieldConfig.batched("image"),
)
def _get_prompt_replacements(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> list[PromptReplacement]:
hf_processor = self.info.get_hf_processor()
image_token_id: int = hf_processor.image_token_id
def get_replacement_deepseek_vl2(item_idx: int):
images = mm_items.get_items(
"image", (ImageEmbeddingItems, ImageProcessorItems))
if isinstance(images, ImageEmbeddingItems):
num_image_tokens = images.get_feature_size(item_idx)
else:
image_size = images.get_image_size(item_idx)
num_image_tokens = self.info.get_num_image_tokens(
image_width=image_size.width,
image_height=image_size.height,
)
return [image_token_id] * num_image_tokens
return [
PromptReplacement(
modality="image",
target=[image_token_id],
replacement=get_replacement_deepseek_vl2,
)
]
@MULTIMODAL_REGISTRY.register_processor(
DeepseekVL2MultiModalProcessor,
info=DeepseekVL2ProcessingInfo,
dummy_inputs=DeepseekVL2DummyInputsBuilder)
class DeepseekVLV2ForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={
"language.": "language_model.",
})
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: DeepseekVLV2Config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
self.vision_config = config.vision_config
self.projector_config = config.projector_config
self.text_config = config.text_config
model_config = vllm_config.model_config
tokenizer = cached_get_tokenizer(
model_config.tokenizer,
tokenizer_mode=model_config.tokenizer_mode,
tokenizer_revision=model_config.tokenizer_revision,
trust_remote_code=model_config.trust_remote_code,
)
self.image_token_id = tokenizer.vocab.get(_IMAGE_TOKEN)
self.vision = self._init_vision_module(self.vision_config,
quant_config,
maybe_prefix(prefix, "vision"))
self.projector = MlpProjector(self.projector_config)
self.tile_tag = config.tile_tag
self.global_view_pos = config.global_view_pos
# special token for image token sequence format
embed_std = 1 / torch.sqrt(
torch.tensor(self.projector_config.n_embed, dtype=torch.float32))
if self.tile_tag == "2D":
# <|view_separator|>, <|\n|>
self.image_newline = nn.Parameter(
torch.randn(self.projector_config.n_embed) * embed_std)
# This is a typo in original implementation
self.view_seperator = nn.Parameter(
torch.randn(self.projector_config.n_embed) * embed_std)
else:
raise ValueError(
f"Only 2D tile_tag is supported currently, got: {self.tile_tag}"
)
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=self.text_config,
prefix=maybe_prefix(prefix, "language"),
architectures=["DeepseekV3ForCausalLM"]
if self.text_config.topk_method == "noaux_tc" else
["DeepseekV2ForCausalLM"],
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
def _init_vision_module(
self,
vision_config: VisionEncoderConfig,
quant_config: Optional[QuantizationConfig],
prefix: str = "",
) -> nn.Module:
# TODO: refactor vision model through timm wrapper from transformers
try:
import timm
except ImportError:
raise ImportError("Please install timm") from ImportError
with set_default_torch_dtype(torch.float16):
model = timm.create_model(
"vit_so400m_patch14_siglip_384.webli",
pretrained=False,
num_classes=0,
dynamic_img_size=True,
dynamic_img_pad=True,
)
model = model.to(dtype=torch.get_default_dtype())
return model
@cached_property
def sampler(self):
if hasattr(self.language_model, "sampler"):
return self.language_model.sampler
return get_sampler()
def _validate_pixel_values(
self, data: Union[torch.Tensor, List[torch.Tensor]]
) -> Union[torch.Tensor, List[torch.Tensor]]:
h = w = self.vision_config.image_size
expected_dims = (3, h, w)
def _validate_shape(d: torch.Tensor):
actual_dims = tuple(d.shape[1:])
if actual_dims != expected_dims:
expected_expr = ("num_patches", *map(str, expected_dims))
raise ValueError(
"The expected shape of pixel values per image per batch "
f"is {expected_expr}. You supplied {tuple(d.shape)}.")
for d in data:
_validate_shape(d)
return data
def _validate_images_spatial_crop(
self, data: Union[torch.Tensor, List[torch.Tensor]]
) -> Union[torch.Tensor, List[torch.Tensor]]:
expected_dims = 2
def _validate_shape(d: torch.Tensor):
actual_dims = d.size(-1)
if actual_dims != expected_dims:
expected_expr = str(expected_dims)
raise ValueError(
f"The expected shape of image sizes per image per batch "
f"is {expected_expr}. You supplied {tuple(d.shape)}.")
for d in data:
_validate_shape(d)
return data
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[DeepseekVL2ImageInputs]:
pixel_values = kwargs.pop("pixel_values", None)
images_spatial_crop = kwargs.pop("images_spatial_crop", None)
image_embeds = kwargs.pop("image_embeds", None)
if pixel_values is None and image_embeds is None:
return None
if pixel_values is not None:
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
if not isinstance(images_spatial_crop, (torch.Tensor, list)):
raise ValueError("Incorrect type of image sizes. "
f"Got type: {type(images_spatial_crop)}")
return DeepseekVL2ImagePixelInputs(
type="pixel_values",
data=self._validate_pixel_values(flatten_bn(pixel_values)),
images_spatial_crop=self._validate_images_spatial_crop(
flatten_bn(images_spatial_crop, concat=True)))
if image_embeds is not None:
if not isinstance(image_embeds, torch.Tensor):
raise ValueError("Incorrect type of image embeddings. "
f"Got type: {type(image_embeds)}")
return DeepseekVL2VImageEmbeddingInputs(
type="image_embeds",
data=flatten_bn(image_embeds),
)
raise AssertionError("This line should be unreachable.")
def _pixel_values_to_embedding(
self,
pixel_values: NestedTensors,
images_spatial_crop: torch.Tensor,
) -> NestedTensors:
# Pixel_values: n_image * batch_size * [patch_per_img, 3, height, width]
total_tiles = [x for x in pixel_values]
# [batch_all_tiles, 3, height, width]
total_tiles = torch.cat(total_tiles, dim=0)
# [batch_all_tiles, vit_seq_len, c]
images_feature = self.vision.forward_features(total_tiles)
# [batch_all_tiles, hw, D]
images_embeds = self.projector(images_feature)
_, hw, n_dim = images_embeds.shape
h = w = int(hw**0.5)
# 根据self.tile_tag & self.global_view_pos填充image token sequence
tile_index = 0
vision_embeddings = []
for jdx in range(images_spatial_crop.size(0)):
# extra global & local features
num_width_tiles, num_height_tiles = images_spatial_crop[jdx]
if num_width_tiles == 0 or num_height_tiles == 0:
break
num_tiles_in_image = num_width_tiles * num_height_tiles
# [hw, D]
global_features = images_embeds[tile_index]
# [num_height_tiles * num_width_tiles, hw, D]
local_features = images_embeds[tile_index + 1:tile_index + 1 +
num_tiles_in_image]
tile_index += num_tiles_in_image + 1
# format global and local features
# ----------------- global view add newline -----------------
# [hw, D] -> [h, w, D]
global_features = global_features.view(h, w, n_dim)
# [D] -> [h, 1, D]
new_lines_in_global = repeat(self.image_newline, "d -> h 1 d", h=h)
# cat([h, w, D], [h, 1, D], dim=1) -> [h, w + 1, D]
global_features = torch.cat([global_features, new_lines_in_global],
dim=1)
# [h, w + 1, D] -> [h * (w + 1), D]
global_features = global_features.view(-1, n_dim)
# ----------------- local view add newline -----------------
# [num_height_tiles * num_width_tiles, h * w, D] ->
# [num_height_tiles * h, num_width_tiles * w, D]
local_features = rearrange(local_features,
"(th tw) (h w) d -> (th h) (tw w) d",
th=num_height_tiles,
tw=num_width_tiles,
h=h,
w=w)
# [D] -> [num_height_tiles * h, 1, D]
new_lines_in_local = repeat(self.image_newline,
"d -> (th h) 1 d",
th=num_height_tiles,
h=h)
# [num_height_tiles * h, num_width_tiles * w + 1, D]
local_features = torch.cat([local_features, new_lines_in_local],
dim=1)
# [num_height_tiles * h, num_width_tiles * w + 1, D]
# --> [(num_height_tiles * h) * (num_width_tiles * w + 1), D]
local_features = local_features.view(-1, n_dim)
# merge global and local tiles
if self.global_view_pos == "head":
global_local_features = torch.cat([
global_features,
self.view_seperator[None, :],
local_features,
])
else:
global_local_features = torch.cat([
local_features,
self.view_seperator[None, :],
global_features,
])
vision_embeddings.append(global_local_features)
return vision_embeddings
def _process_image_input(
self, image_input: DeepseekVL2ImageInputs) -> torch.Tensor:
if image_input["type"] == "image_embeds":
image_data = image_input["data"]
if is_list_of(image_data, torch.Tensor):
# it's already a list of tensors
return image_data
if len(image_data.shape) == 3:
# 3D tensor
return list(torch.unbind(image_data, dim=0))
raise ValueError(
"We expect batched 2D tensors;"
"this can be either a list of 2D tensors or a single 3D tensor."
)
pixel_values = image_input["data"]
images_spatial_crop = image_input["images_spatial_crop"]
return self._pixel_values_to_embedding(
pixel_values=pixel_values, images_spatial_crop=images_spatial_crop)
def get_multimodal_embeddings(self, **kwargs: object) -> torch.Tensor:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return None
vision_embeddings = self._process_image_input(image_input)
return vision_embeddings
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[NestedTensors] = None,
) -> torch.Tensor:
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
self.image_token_id)
return inputs_embeds
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object):
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner, this
# condition is for v0 compatibility
elif inputs_embeds is None:
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids,
vision_embeddings)
input_ids = None
hidden_states = self.language_model(input_ids,
positions,
kv_caches,
attn_metadata,
intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
return self.language_model.sample(logits, sampling_metadata)
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
loader = AutoWeightsLoader(self)
autoloaded_weights = loader.load_weights(weights,
mapper=self.hf_to_vllm_mapper)
return autoloaded_weights

View File

@ -657,7 +657,7 @@ class MiniCPMV2_0(MiniCPMVBaseModel):
quant_config: Optional[QuantizationConfig],
prefix: str = "",
) -> nn.Module:
# TODO: refactor this vision model
# TODO: refactor vision model through timm wrapper from transformers
try:
import timm
except ImportError:

View File

@ -149,6 +149,7 @@ _MULTIMODAL_MODELS = {
"ChameleonForConditionalGeneration": ("chameleon", "ChameleonForConditionalGeneration"), # noqa: E501
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
"ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"),
"DeepseekVLV2ForCausalLM": ("deepseek_vl2", "DeepseekVLV2ForCausalLM"),
"FuyuForCausalLM": ("fuyu", "FuyuForCausalLM"),
"H2OVLChatModel": ("h2ovl", "H2OVLChatModel"),
"InternVLChatModel": ("internvl", "InternVLChatModel"),

View File

@ -23,8 +23,9 @@ from vllm.logger import init_logger
# yapf conflicts with isort for this block
# yapf: disable
from vllm.transformers_utils.configs import (ChatGLMConfig, Cohere2Config,
DbrxConfig, EAGLEConfig,
ExaoneConfig, H2OVLChatConfig,
DbrxConfig, DeepseekVLV2Config,
EAGLEConfig, ExaoneConfig,
H2OVLChatConfig,
InternVLChatConfig, JAISConfig,
MedusaConfig, MllamaConfig,
MLPSpeculatorConfig, MPTConfig,
@ -54,6 +55,7 @@ _CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
"chatglm": ChatGLMConfig,
"cohere2": Cohere2Config,
"dbrx": DbrxConfig,
"deepseek_vl_v2": DeepseekVLV2Config,
"mpt": MPTConfig,
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)

View File

@ -1,6 +1,7 @@
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
from vllm.transformers_utils.configs.cohere2 import Cohere2Config
from vllm.transformers_utils.configs.dbrx import DbrxConfig
from vllm.transformers_utils.configs.deepseek_vl2 import DeepseekVLV2Config
from vllm.transformers_utils.configs.eagle import EAGLEConfig
from vllm.transformers_utils.configs.exaone import ExaoneConfig
# RWConfig is for the original tiiuae/falcon-40b(-instruct) and
@ -25,6 +26,7 @@ __all__ = [
"ChatGLMConfig",
"Cohere2Config",
"DbrxConfig",
"DeepseekVLV2Config",
"MPTConfig",
"RWConfig",
"H2OVLChatConfig",

View File

@ -0,0 +1,214 @@
# adapted from https://github.com/deepseek-ai/DeepSeek-VL2/blob/faf18023f24b962b32d9f0a2d89e402a8d383a78/deepseek_vl2/models/modeling_deepseek_vl_v2.py#L115-L268
from typing import Tuple
from transformers.configuration_utils import PretrainedConfig
class VisionEncoderConfig(PretrainedConfig):
model_type: str = "vision"
model_name: str = "vit_so400m_patch14_siglip_384.webli"
image_size: int = 384
patch_size: int = 16
width: int = 1024
layers: int = 24
heads: int = 16
mlp_ratio: int = 4
global_pool: str = "map"
ignore_head: bool = True
class_token: bool = False
num_classes: int = 0
use_checkpoint: bool = False
weight_init: str = "skip"
deterministic: bool = False
num_recomputing_layers: int = 0
def __init__(self,
model_name: str = "vit_so400m_patch14_siglip_384.webli",
image_size: int = 384,
patch_size: int = 16,
width: int = 1024,
layers: int = 24,
heads: int = 16,
mlp_ratio: int = 4,
global_pool: str = "map",
ignore_head: bool = True,
class_token: bool = False,
num_classes: int = 0,
use_checkpoint: bool = False,
**kwargs):
self.model_name = model_name
self.image_size = image_size
self.patch_size = patch_size
self.width = width
self.layers = layers
self.heads = heads
self.mlp_ratio = mlp_ratio
self.global_pool = global_pool
self.ignore_head = ignore_head
self.class_token = class_token
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
super().__init__(**kwargs)
class MlpProjectorConfig(PretrainedConfig):
model_type = "mlp_projector"
projector_type: str = "downsample_mlp_gelu"
input_dim: int = 1152
n_embed: int = 2048
depth: int = 2
mlp_ratio: int = 1
downsample_ratio: int = 2
token_pooling: bool = False
def __init__(self,
projector_type: str = "downsample_mlp_gelu",
input_dim: int = 1152,
n_embed: int = 2048,
depth: int = 2,
mlp_ratio: int = 1,
downsample_ratio: int = 2,
**kwargs):
self.projector_type = projector_type
self.input_dim = input_dim
self.n_embed = n_embed
self.depth = depth
self.mlp_ratio = mlp_ratio
self.downsample_ratio = downsample_ratio
super().__init__(**kwargs)
class DeepseekV2Config(PretrainedConfig):
model_type = "deepseek_v2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=102400,
hidden_size=4096,
intermediate_size=11008,
moe_intermediate_size=1407,
num_hidden_layers=30,
num_attention_heads=32,
num_key_value_heads=32,
n_shared_experts=None,
n_routed_experts=None,
ep_size=1,
routed_scaling_factor=1.0,
kv_lora_rank=512,
q_lora_rank=1536,
qk_rope_head_dim=64,
v_head_dim=128,
qk_nope_head_dim=128,
topk_method='gready',
n_group=None,
topk_group=None,
num_experts_per_tok=None,
moe_layer_freq=1,
first_k_dense_replace=0,
norm_topk_prob=False,
scoring_func='softmax',
aux_loss_alpha=0.001,
seq_aux=True,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=100000,
eos_token_id=100001,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
use_mla=True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.moe_intermediate_size = moe_intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.n_shared_experts = n_shared_experts
self.n_routed_experts = n_routed_experts
self.ep_size = ep_size
self.routed_scaling_factor = routed_scaling_factor
self.kv_lora_rank = kv_lora_rank
self.q_lora_rank = q_lora_rank
self.qk_rope_head_dim = qk_rope_head_dim
self.v_head_dim = v_head_dim
self.qk_nope_head_dim = qk_nope_head_dim
self.topk_method = topk_method
self.n_group = n_group
self.topk_group = topk_group
self.num_experts_per_tok = num_experts_per_tok
self.moe_layer_freq = moe_layer_freq
self.first_k_dense_replace = first_k_dense_replace
self.norm_topk_prob = norm_topk_prob
self.scoring_func = scoring_func
self.aux_loss_alpha = aux_loss_alpha
self.seq_aux = seq_aux
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = float(rms_norm_eps)
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.use_mla = use_mla
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class DeepseekVLV2Config(PretrainedConfig):
model_type = "deepseek_vl_v2"
vision_config: VisionEncoderConfig
projector_config: MlpProjectorConfig
tile_tag: str = "2D"
global_view_pos: str = "head"
candidate_resolutions: Tuple[Tuple[int, int]] = ((384, 384), )
def __init__(self,
tile_tag: str = "tile_tag",
global_view_pos: str = "head",
candidate_resolutions: Tuple[Tuple[int,
int]] = ((384, 384), ),
**kwargs):
super().__init__(**kwargs)
vision_config = kwargs.get("vision_config", {})
self.vision_config = VisionEncoderConfig(**vision_config)
projector_config = kwargs.get("projector_config", {})
self.projector_config = MlpProjectorConfig(**projector_config)
language_config = kwargs.get("language_config", {})
self.text_config = DeepseekV2Config(**language_config)
self.tile_tag = tile_tag
self.global_view_pos = global_view_pos
self.candidate_resolutions = candidate_resolutions
self.vocab_size = self.text_config.vocab_size