[Model] Initialize support for Deepseek-VL2 models (#11578)
Signed-off-by: Isotr0py <2037008807@qq.com> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
This commit is contained in:
parent
43f3d9e699
commit
f967e51f38
@ -52,6 +52,7 @@ steps:
|
||||
- tests/worker
|
||||
- tests/standalone_tests/lazy_torch_compile.py
|
||||
commands:
|
||||
- pip install git+https://github.com/Isotr0py/DeepSeek-VL2.git # Used by multimoda processing test
|
||||
- python3 standalone_tests/lazy_torch_compile.py
|
||||
- pytest -v -s mq_llm_engine # MQLLMEngine
|
||||
- pytest -v -s async_engine # AsyncLLMEngine
|
||||
|
@ -610,6 +610,13 @@ See [this page](#generative-models) for more information on how to use generativ
|
||||
-
|
||||
- ✅︎
|
||||
- ✅︎
|
||||
* - `DeepseekVLV2ForCausalLM`
|
||||
- DeepSeek-VL2
|
||||
- T + I<sup>+</sup>
|
||||
- `deepseek-ai/deepseek-vl2-tiny`(WIP), `deepseek-ai/deepseek-vl2-small`, `deepseek-ai/deepseek-vl2` etc. (see note)
|
||||
-
|
||||
- ✅︎
|
||||
- ✅︎
|
||||
* - `FuyuForCausalLM`
|
||||
- Fuyu
|
||||
- T + I
|
||||
@ -755,8 +762,19 @@ See [this page](#generative-models) for more information on how to use generativ
|
||||
<sup>E</sup> Pre-computed embeddings can be inputted for this modality.
|
||||
<sup>+</sup> Multiple items can be inputted per text prompt for this modality.
|
||||
|
||||
````{note}
|
||||
The `deepseek-ai/deepseek-vl2-tiny` is not supported yet.
|
||||
|
||||
To use `DeepSeek-VL2` series models, you need to install a fork version `deepseek_vl2` package:
|
||||
```shell
|
||||
pip install git+https://github.com/Isotr0py/DeepSeek-VL2.git
|
||||
```
|
||||
|
||||
Besides, to run `DeepSeek-VL2` series models, you have to pass `--hf_overrides '{"architectures": ["DeepseekVLV2ForCausalLM"]}'` when running vLLM.
|
||||
````
|
||||
|
||||
```{note}
|
||||
To use `TIGER-Lab/Mantis-8B-siglip-llama3`, you have pass `--hf_overrides '{"architectures": ["MantisForConditionalGeneration"]}'` when running vLLM.
|
||||
To use `TIGER-Lab/Mantis-8B-siglip-llama3`, you have to pass `--hf_overrides '{"architectures": ["MantisForConditionalGeneration"]}'` when running vLLM.
|
||||
```
|
||||
|
||||
```{note}
|
||||
|
@ -66,6 +66,23 @@ def run_chameleon(question: str, modality: str):
|
||||
return llm, prompt, stop_token_ids
|
||||
|
||||
|
||||
# Deepseek-VL2
|
||||
def run_deepseek_vl2(question: str, modality: str):
|
||||
assert modality == "image"
|
||||
|
||||
model_name = "deepseek-ai/deepseek-vl2-small"
|
||||
|
||||
llm = LLM(model=model_name,
|
||||
max_model_len=4096,
|
||||
max_num_seqs=2,
|
||||
disable_mm_preprocessor_cache=args.disable_mm_preprocessor_cache,
|
||||
hf_overrides={"architectures": ["DeepseekVLV2ForCausalLM"]})
|
||||
|
||||
prompt = f"<|User|>: <image>\n{question}\n\n<|Assistant|>:"
|
||||
stop_token_ids = None
|
||||
return llm, prompt, stop_token_ids
|
||||
|
||||
|
||||
# Fuyu
|
||||
def run_fuyu(question: str, modality: str):
|
||||
assert modality == "image"
|
||||
@ -498,6 +515,7 @@ model_example_map = {
|
||||
"aria": run_aria,
|
||||
"blip-2": run_blip2,
|
||||
"chameleon": run_chameleon,
|
||||
"deepseek_vl_v2": run_deepseek_vl2,
|
||||
"fuyu": run_fuyu,
|
||||
"glm4v": run_glm4v,
|
||||
"h2ovl_chat": run_h2ovl,
|
||||
|
@ -54,6 +54,28 @@ def load_aria(question, image_urls: List[str]) -> ModelRequestData:
|
||||
)
|
||||
|
||||
|
||||
def load_deepseek_vl2(question: str, image_urls: List[str]):
|
||||
model_name = "deepseek-ai/deepseek-vl2-small"
|
||||
|
||||
llm = LLM(model=model_name,
|
||||
max_model_len=4096,
|
||||
max_num_seqs=2,
|
||||
hf_overrides={"architectures": ["DeepseekVLV2ForCausalLM"]},
|
||||
limit_mm_per_prompt={"image": len(image_urls)})
|
||||
|
||||
placeholder = "".join(f"image_{i}:<image>\n"
|
||||
for i, _ in enumerate(image_urls, start=1))
|
||||
prompt = f"<|User|>: {placeholder}{question}\n\n<|Assistant|>:"
|
||||
|
||||
return ModelRequestData(
|
||||
llm=llm,
|
||||
prompt=prompt,
|
||||
stop_token_ids=None,
|
||||
image_data=[fetch_image(url) for url in image_urls],
|
||||
chat_template=None,
|
||||
)
|
||||
|
||||
|
||||
def load_h2onvl(question: str, image_urls: List[str]) -> ModelRequestData:
|
||||
model_name = "h2oai/h2ovl-mississippi-2b"
|
||||
|
||||
@ -372,6 +394,7 @@ def load_qwen2_vl(question, image_urls: List[str]) -> ModelRequestData:
|
||||
|
||||
model_example_map = {
|
||||
"aria": load_aria,
|
||||
"deepseek_vl2": load_deepseek_vl2,
|
||||
"h2ovl_chat": load_h2onvl,
|
||||
"idefics3": load_idefics3,
|
||||
"internvl_chat": load_internvl,
|
||||
|
@ -188,6 +188,33 @@ VLM_TEST_SETTINGS = {
|
||||
max_tokens=8,
|
||||
dtype="bfloat16",
|
||||
),
|
||||
"deepseek_vl_v2": VLMTestInfo(
|
||||
models=["deepseek-ai/deepseek-vl2-small"],
|
||||
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
|
||||
dtype="bfloat16",
|
||||
prompt_formatter=lambda img_prompt: f"<|User|>: {img_prompt}\n\n<|Assistant|>: ", # noqa: E501
|
||||
max_model_len=4096,
|
||||
max_num_seqs=2,
|
||||
single_image_prompts=IMAGE_ASSETS.prompts({
|
||||
"stop_sign": "<image>\nWhat's the color of the stop sign and car?",
|
||||
"cherry_blossom": "<image>\nWhat's the color of the tower?",
|
||||
}),
|
||||
multi_image_prompt="image_1:<image>\nimage_2:<image>\nDescribe the two images shortly.", # noqa: E501
|
||||
vllm_runner_kwargs={"hf_overrides": {"architectures": ["DeepseekVLV2ForCausalLM"]}}, # noqa: E501
|
||||
image_size_factors=[(0.10, 0.15)],
|
||||
patch_hf_runner=model_utils.deepseekvl2_patch_hf_runner,
|
||||
postprocess_inputs=model_utils.cast_dtype_post_processor("images"),
|
||||
hf_output_post_proc=model_utils.deepseekvl2_trunc_hf_output,
|
||||
stop_str=["<|end▁of▁sentence|>", "<|begin▁of▁sentence|>"], # noqa: E501
|
||||
num_logprobs=5,
|
||||
marks=[
|
||||
pytest.mark.skipif(
|
||||
not is_flash_attn_2_available(),
|
||||
reason="Model needs flash-attn for numeric convergence.",
|
||||
),
|
||||
large_gpu_mark(min_gb=48),
|
||||
],
|
||||
),
|
||||
"fuyu": VLMTestInfo(
|
||||
models=["adept/fuyu-8b"],
|
||||
test_type=VLMTestType.IMAGE,
|
||||
|
@ -183,6 +183,14 @@ def paligemma_vllm_to_hf_output(vllm_output: RunnerOutput,
|
||||
|
||||
|
||||
####### Post-processors for HF outputs
|
||||
def deepseekvl2_trunc_hf_output(hf_output: RunnerOutput,
|
||||
model: str) -> RunnerOutput:
|
||||
output_ids, output_str, out_logprobs = hf_output
|
||||
if output_str.endswith("<|end▁of▁sentence|>"):
|
||||
output_str = output_str.split("<|end▁of▁sentence|>")[0]
|
||||
return output_ids, output_str, out_logprobs
|
||||
|
||||
|
||||
def minicpmv_trunc_hf_output(hf_output: RunnerOutput,
|
||||
model: str) -> RunnerOutput:
|
||||
output_ids, output_str, out_logprobs = hf_output
|
||||
@ -261,6 +269,34 @@ def qwen_prompt_path_encoder(
|
||||
|
||||
|
||||
####### Model-specific HuggingFace runner patchers
|
||||
def deepseekvl2_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
|
||||
"""Patches and returns an instance of the HfRunner to use for GLM4."""
|
||||
hf_processor = hf_model.processor
|
||||
|
||||
def processor(*args, text="", images=None, **kwargs):
|
||||
if isinstance(images, Image):
|
||||
images = [images]
|
||||
# inputs is a custom class instead of dict or BatchFeature
|
||||
inputs = hf_processor(
|
||||
*args,
|
||||
prompt=text,
|
||||
images=images,
|
||||
**kwargs,
|
||||
)
|
||||
inputs = {
|
||||
k: inputs[k]
|
||||
for k in inputs.keys() # noqa
|
||||
if k not in ("seq_lens", "sft_format")
|
||||
}
|
||||
inputs = BatchEncoding(data=inputs, tensor_type="pt")
|
||||
return inputs
|
||||
|
||||
hf_model.processor = processor
|
||||
hf_model.model.get_output_embeddings = lambda: \
|
||||
hf_model.model.language.model.embed_tokens
|
||||
return hf_model
|
||||
|
||||
|
||||
def glm_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
|
||||
"""Patches and returns an instance of the HfRunner to use for GLM4."""
|
||||
hf_processor = hf_model.processor
|
||||
|
@ -179,6 +179,8 @@ _MULTIMODAL_EXAMPLE_MODELS = {
|
||||
trust_remote_code=True),
|
||||
"ChatGLMForConditionalGeneration": _HfExamplesInfo("chatglm2-6b",
|
||||
is_available_online=False),
|
||||
# TODO(Isotr0py): Use deepseek-vl2-tiny for test after it's supported
|
||||
"DeepseekVLV2ForCausalLM": _HfExamplesInfo("deepseek-ai/deepseek-vl2-small"), # noqa: E501
|
||||
"FuyuForCausalLM": _HfExamplesInfo("adept/fuyu-8b"),
|
||||
"H2OVLChatModel": _HfExamplesInfo("h2oai/h2ovl-mississippi-800m"),
|
||||
"InternVLChatModel": _HfExamplesInfo("OpenGVLab/InternVL2-1B",
|
||||
|
@ -26,6 +26,9 @@ def test_can_initialize(model_arch):
|
||||
|
||||
# Avoid OOM
|
||||
def hf_overrides(hf_config: PretrainedConfig) -> PretrainedConfig:
|
||||
if hf_config.model_type == "deepseek_vl_v2":
|
||||
hf_config.update({"architectures": ["DeepseekVLV2ForCausalLM"]})
|
||||
|
||||
if hasattr(hf_config, "text_config"):
|
||||
text_config: PretrainedConfig = hf_config.text_config
|
||||
else:
|
||||
|
@ -403,8 +403,8 @@ class BaseMultiModalItemTracker(ABC, Generic[_T]):
|
||||
if model_type.startswith("llava"):
|
||||
return self._cached_token_str(self._tokenizer,
|
||||
hf_config.image_token_index)
|
||||
if model_type in ("chameleon", "internvl_chat", "NVLM_D",
|
||||
"h2ovl_chat"):
|
||||
if model_type in ("chameleon", "deepseek_vl_v2", "internvl_chat",
|
||||
"NVLM_D", "h2ovl_chat"):
|
||||
return "<image>"
|
||||
if model_type == "mllama":
|
||||
return "<|image|>"
|
||||
|
@ -243,7 +243,11 @@ class DeepseekV2Attention(nn.Module):
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj")
|
||||
rope_scaling["rope_type"] = 'deepseek_yarn'
|
||||
if rope_scaling:
|
||||
rope_scaling["rope_type"] = 'deepseek_yarn'
|
||||
self.use_normal_rope = False
|
||||
else:
|
||||
self.use_normal_rope = True
|
||||
self.rotary_emb = get_rope(qk_rope_head_dim,
|
||||
rotary_dim=qk_rope_head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
@ -298,7 +302,18 @@ class DeepseekV2Attention(nn.Module):
|
||||
self.qk_nope_head_dim + self.v_head_dim)
|
||||
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
||||
k_pe = latent_cache[:, :, self.kv_lora_rank:]
|
||||
|
||||
if self.use_normal_rope:
|
||||
seq_len = positions.size(0)
|
||||
ori_q_pe_shape, ori_k_pe_shape = q_pe.shape, k_pe.shape
|
||||
q_pe = q_pe.reshape(seq_len, -1)
|
||||
k_pe = k_pe.reshape(seq_len, -1)
|
||||
|
||||
q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
|
||||
|
||||
if self.use_normal_rope:
|
||||
q_pe, k_pe = q_pe.view(ori_q_pe_shape), k_pe.view(ori_k_pe_shape)
|
||||
|
||||
q[..., self.qk_nope_head_dim:] = q_pe
|
||||
k = torch.empty_like(q)
|
||||
k[..., :self.qk_nope_head_dim] = k_nope
|
||||
@ -355,6 +370,7 @@ class DeepseekV2DecoderLayer(nn.Module):
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
|
||||
if (config.n_routed_experts is not None
|
||||
and layer_idx >= config.first_k_dense_replace
|
||||
and layer_idx % config.moe_layer_freq == 0):
|
||||
|
@ -251,7 +251,11 @@ class DeepseekV3Attention(nn.Module):
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj")
|
||||
rope_scaling["rope_type"] = 'deepseek_yarn'
|
||||
if rope_scaling:
|
||||
rope_scaling["rope_type"] = 'deepseek_yarn'
|
||||
self.use_normal_rope = False
|
||||
else:
|
||||
self.use_normal_rope = True
|
||||
self.rotary_emb = get_rope(qk_rope_head_dim,
|
||||
rotary_dim=qk_rope_head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
@ -306,7 +310,18 @@ class DeepseekV3Attention(nn.Module):
|
||||
self.qk_nope_head_dim + self.v_head_dim)
|
||||
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
||||
k_pe = latent_cache[:, :, self.kv_lora_rank:]
|
||||
|
||||
if self.use_normal_rope:
|
||||
seq_len = positions.size(0)
|
||||
ori_q_pe_shape, ori_k_pe_shape = q_pe.shape, k_pe.shape
|
||||
q_pe = q_pe.reshape(seq_len, -1)
|
||||
k_pe = k_pe.reshape(seq_len, -1)
|
||||
|
||||
q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
|
||||
|
||||
if self.use_normal_rope:
|
||||
q_pe, k_pe = q_pe.view(ori_q_pe_shape), k_pe.view(ori_k_pe_shape)
|
||||
|
||||
q[..., self.qk_nope_head_dim:] = q_pe
|
||||
k = torch.empty_like(q)
|
||||
k[..., :self.qk_nope_head_dim] = k_nope
|
||||
@ -583,7 +598,8 @@ class DeepseekV3ForCausalLM(nn.Module, SupportsPP):
|
||||
continue
|
||||
|
||||
# TODO(simon): support nextn predict layers
|
||||
if self.config.num_nextn_predict_layers > 0:
|
||||
if hasattr(self.config, "num_nextn_predict_layers"
|
||||
) and self.config.num_nextn_predict_layers > 0:
|
||||
assert self.config.num_nextn_predict_layers == 1
|
||||
layer_idx = self.config.num_hidden_layers
|
||||
if name.startswith(f"model.layers.{layer_idx}"):
|
||||
|
662
vllm/model_executor/models/deepseek_vl2.py
Normal file
662
vllm/model_executor/models/deepseek_vl2.py
Normal file
@ -0,0 +1,662 @@
|
||||
# adapted from https://github.com/deepseek-ai/DeepSeek-VL2/blob/faf18023f24b962b32d9f0a2d89e402a8d383a78/deepseek_vl2/models/modeling_deepseek_vl_v2.py
|
||||
"""Inference-only Deepseek-VL2 model compatible with HuggingFace weights."""
|
||||
import math
|
||||
from functools import cached_property, partial
|
||||
from typing import (Iterable, List, Literal, Mapping, Optional, Set, Tuple,
|
||||
TypedDict, Union)
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
from transformers import AutoProcessor, BatchFeature, ProcessorMixin
|
||||
|
||||
from vllm.attention import AttentionMetadata
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor import SamplingMetadata
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
||||
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
|
||||
from vllm.multimodal import MULTIMODAL_REGISTRY
|
||||
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
|
||||
NestedTensors)
|
||||
from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems,
|
||||
ImageSize, MultiModalDataItems)
|
||||
from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
||||
BaseProcessingInfo, PromptReplacement)
|
||||
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
|
||||
from vllm.multimodal.utils import cached_get_tokenizer
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.transformers_utils.configs.deepseek_vl2 import (DeepseekVLV2Config,
|
||||
MlpProjectorConfig,
|
||||
VisionEncoderConfig)
|
||||
from vllm.utils import is_list_of
|
||||
|
||||
from .interfaces import SupportsMultiModal, SupportsPP
|
||||
from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
|
||||
init_vllm_registered_model, maybe_prefix,
|
||||
merge_multimodal_embeddings)
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
# The image token id may be various
|
||||
_IMAGE_TOKEN = "<image>"
|
||||
|
||||
|
||||
class DeepseekVL2ImagePixelInputs(TypedDict):
|
||||
type: Literal["pixel_values"]
|
||||
data: Union[torch.Tensor, List[torch.Tensor]]
|
||||
"""
|
||||
Shape: `(batch_size * num_images, num_channels, height, width)`
|
||||
"""
|
||||
images_spatial_crop: torch.Tensor
|
||||
"""
|
||||
Shape: `(batch_size * num_images, 2)`
|
||||
"""
|
||||
|
||||
|
||||
class DeepseekVL2VImageEmbeddingInputs(TypedDict):
|
||||
type: Literal["image_embeds"]
|
||||
data: Union[torch.Tensor, List[torch.Tensor]]
|
||||
"""Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
|
||||
|
||||
`hidden_size` must match the hidden size of language model backbone.
|
||||
"""
|
||||
|
||||
|
||||
DeepseekVL2ImageInputs = Union[DeepseekVL2ImagePixelInputs,
|
||||
DeepseekVL2VImageEmbeddingInputs]
|
||||
|
||||
|
||||
class MlpProjector(nn.Module):
|
||||
|
||||
def __init__(self, cfg: MlpProjectorConfig):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.cfg = cfg
|
||||
assert not cfg.token_pooling, (
|
||||
"Token pooling is not supported currently.")
|
||||
|
||||
if cfg.projector_type == "downsample_mlp_gelu":
|
||||
mlp_depth = cfg.depth
|
||||
mlp_ratio = cfg.mlp_ratio
|
||||
modules = [
|
||||
nn.Linear(
|
||||
cfg.input_dim * cfg.downsample_ratio *
|
||||
cfg.downsample_ratio, cfg.n_embed * mlp_ratio)
|
||||
]
|
||||
for _ in range(1, mlp_depth - 1):
|
||||
modules.append(nn.GELU())
|
||||
modules.append(
|
||||
nn.Linear(cfg.n_embed * mlp_ratio,
|
||||
cfg.n_embed * mlp_ratio))
|
||||
modules.append(nn.GELU())
|
||||
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
|
||||
modules = nn.Sequential(*modules)
|
||||
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Unsupported projector type: {cfg.projector_type}")
|
||||
|
||||
self.layers = modules
|
||||
|
||||
def forward(self, x):
|
||||
bs, hw, input_dim = x.shape
|
||||
h = w = int((hw)**0.5)
|
||||
"""compute padding"""
|
||||
if h % self.cfg.downsample_ratio:
|
||||
pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
|
||||
else:
|
||||
pad = 0
|
||||
x = x.reshape(bs, h, w, input_dim)
|
||||
if pad > 0:
|
||||
x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
|
||||
"""4 to 1 concat"""
|
||||
x = x.permute(0, 3, 1, 2) # B, C, H, W
|
||||
x = F.unfold(x,
|
||||
kernel_size=self.cfg.downsample_ratio,
|
||||
stride=self.cfg.downsample_ratio,
|
||||
padding=0) # B, C*4, HW // 4
|
||||
x = x.permute(0, 2, 1)
|
||||
|
||||
return self.layers(x)
|
||||
|
||||
|
||||
class DeepseekVL2ProcessingInfo(BaseProcessingInfo):
|
||||
|
||||
def get_hf_config(self):
|
||||
return self.ctx.get_hf_config(DeepseekVLV2Config)
|
||||
|
||||
def get_hf_processor(self) -> ProcessorMixin:
|
||||
# TODO(Isotr0py): we should get rid of dependency on deepseek_vl2
|
||||
# in the future, because it's flasky and lack of maintenance.
|
||||
try:
|
||||
from deepseek_vl2.models.processing_deepseek_vl_v2 import (
|
||||
DeepseekVLV2Processor, select_best_resolution)
|
||||
AutoProcessor.register("DeepseekVLV2Processor",
|
||||
DeepseekVLV2Processor)
|
||||
except ModuleNotFoundError as exc:
|
||||
raise ModuleNotFoundError(
|
||||
"You need to `pip install "
|
||||
"git+https://github.com/deepseek-ai/DeepSeek-VL2.git` "
|
||||
"to use this model") from exc
|
||||
|
||||
processor = self.ctx.get_hf_processor(DeepseekVLV2Processor)
|
||||
processor.select_best_resolution = partial(
|
||||
select_best_resolution,
|
||||
candidate_resolutions=processor.candidate_resolutions)
|
||||
return processor
|
||||
|
||||
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
||||
return {"image": None}
|
||||
|
||||
def get_num_image_tokens(self, *, image_width: int,
|
||||
image_height: int) -> int:
|
||||
hf_processor = self.get_hf_processor()
|
||||
image_size = hf_processor.image_size
|
||||
patch_size = hf_processor.patch_size
|
||||
downsample_ratio = hf_processor.downsample_ratio
|
||||
|
||||
best_width, best_height = hf_processor.select_best_resolution(
|
||||
(image_width, image_height))
|
||||
|
||||
num_width_tiles, num_height_tiles = (best_width // image_size,
|
||||
best_height // image_size)
|
||||
h = w = math.ceil((image_size // patch_size) / downsample_ratio)
|
||||
|
||||
global_views_tokens = h * (w + 1)
|
||||
local_views_tokens = (num_height_tiles * h) * (num_width_tiles * w + 1)
|
||||
return global_views_tokens + local_views_tokens + 1
|
||||
|
||||
def get_image_size_with_most_features(self) -> ImageSize:
|
||||
hf_config = self.get_hf_config()
|
||||
candidate_resolutions = hf_config.candidate_resolutions
|
||||
height, width = max(candidate_resolutions,
|
||||
key=lambda x: self.get_num_image_tokens(
|
||||
image_width=x[1], image_height=x[0]))
|
||||
return ImageSize(width=width, height=height)
|
||||
|
||||
def get_mm_max_tokens_per_item(self, seq_len: int) -> Mapping[str, int]:
|
||||
max_image_size = self.get_image_size_with_most_features()
|
||||
max_image_tokens = self.get_num_image_tokens(
|
||||
image_height=max_image_size.height,
|
||||
image_width=max_image_size.width)
|
||||
|
||||
return {"image": max_image_tokens}
|
||||
|
||||
|
||||
class DeepseekVL2DummyInputsBuilder(
|
||||
BaseDummyInputsBuilder[DeepseekVL2ProcessingInfo]):
|
||||
|
||||
def get_dummy_processor_inputs(
|
||||
self,
|
||||
seq_len: int,
|
||||
mm_counts: Mapping[str, int],
|
||||
) -> ProcessorInputs:
|
||||
num_images = mm_counts.get("image", 0)
|
||||
hf_processor = self.info.get_hf_processor()
|
||||
image_token: str = hf_processor.image_token
|
||||
|
||||
max_image_size = self.info.get_image_size_with_most_features()
|
||||
|
||||
mm_data = {
|
||||
"image":
|
||||
self._get_dummy_images(width=max_image_size.width,
|
||||
height=max_image_size.height,
|
||||
num_images=num_images)
|
||||
}
|
||||
|
||||
return ProcessorInputs(
|
||||
prompt_text=image_token * num_images,
|
||||
mm_data=mm_data,
|
||||
)
|
||||
|
||||
|
||||
class DeepseekVL2MultiModalProcessor(
|
||||
BaseMultiModalProcessor[DeepseekVL2ProcessingInfo]):
|
||||
|
||||
def _call_hf_processor(
|
||||
self,
|
||||
prompt: str,
|
||||
mm_data: Mapping[str, object],
|
||||
mm_kwargs: Mapping[str, object],
|
||||
) -> BatchFeature:
|
||||
if mm_data:
|
||||
outputs = self.info.ctx.call_hf_processor(
|
||||
self.info.get_hf_processor(**mm_kwargs),
|
||||
dict(prompt=prompt, **mm_data),
|
||||
mm_kwargs,
|
||||
)
|
||||
|
||||
# Deepseek-vl2 processor don't return BatchFeature,
|
||||
# we need to manually create it
|
||||
processed_outputs = dict(input_ids=outputs["input_ids"])
|
||||
processed_outputs = BatchFeature(data=dict(processed_outputs),
|
||||
tensor_type="pt")
|
||||
|
||||
# Remove batch dimension from processor outputs,
|
||||
# because we will try batch to create NestedTensors
|
||||
target_dtype = self.info.ctx.model_config.dtype
|
||||
pixel_values = outputs["images"].to(target_dtype).squeeze(0)
|
||||
images_spatial_crop = outputs["images_spatial_crop"].squeeze(0)
|
||||
patches_per_image = [
|
||||
x.prod().item() + 1 for x in images_spatial_crop
|
||||
]
|
||||
|
||||
# Rename `images` -> `pixel_values` to avoid confusion
|
||||
processed_outputs["pixel_values"] = list(
|
||||
pixel_values.split(patches_per_image))
|
||||
processed_outputs["images_spatial_crop"] = images_spatial_crop
|
||||
else:
|
||||
tokenizer = self.info.get_tokenizer()
|
||||
processed_outputs = tokenizer(prompt,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt")
|
||||
|
||||
return processed_outputs
|
||||
|
||||
def _get_mm_fields_config(
|
||||
self,
|
||||
hf_inputs: BatchFeature,
|
||||
hf_processor_mm_kwargs: Mapping[str, object],
|
||||
) -> Mapping[str, MultiModalFieldConfig]:
|
||||
return dict(
|
||||
pixel_values=MultiModalFieldConfig.batched("image"),
|
||||
images_spatial_crop=MultiModalFieldConfig.batched("image"),
|
||||
image_embeds=MultiModalFieldConfig.batched("image"),
|
||||
)
|
||||
|
||||
def _get_prompt_replacements(
|
||||
self,
|
||||
mm_items: MultiModalDataItems,
|
||||
hf_processor_mm_kwargs: Mapping[str, object],
|
||||
out_mm_kwargs: MultiModalKwargs,
|
||||
) -> list[PromptReplacement]:
|
||||
hf_processor = self.info.get_hf_processor()
|
||||
image_token_id: int = hf_processor.image_token_id
|
||||
|
||||
def get_replacement_deepseek_vl2(item_idx: int):
|
||||
images = mm_items.get_items(
|
||||
"image", (ImageEmbeddingItems, ImageProcessorItems))
|
||||
|
||||
if isinstance(images, ImageEmbeddingItems):
|
||||
num_image_tokens = images.get_feature_size(item_idx)
|
||||
else:
|
||||
image_size = images.get_image_size(item_idx)
|
||||
|
||||
num_image_tokens = self.info.get_num_image_tokens(
|
||||
image_width=image_size.width,
|
||||
image_height=image_size.height,
|
||||
)
|
||||
return [image_token_id] * num_image_tokens
|
||||
|
||||
return [
|
||||
PromptReplacement(
|
||||
modality="image",
|
||||
target=[image_token_id],
|
||||
replacement=get_replacement_deepseek_vl2,
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
@MULTIMODAL_REGISTRY.register_processor(
|
||||
DeepseekVL2MultiModalProcessor,
|
||||
info=DeepseekVL2ProcessingInfo,
|
||||
dummy_inputs=DeepseekVL2DummyInputsBuilder)
|
||||
class DeepseekVLV2ForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
|
||||
|
||||
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={
|
||||
"language.": "language_model.",
|
||||
})
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
config: DeepseekVLV2Config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
multimodal_config = vllm_config.model_config.multimodal_config
|
||||
|
||||
self.config = config
|
||||
self.multimodal_config = multimodal_config
|
||||
|
||||
self.vision_config = config.vision_config
|
||||
self.projector_config = config.projector_config
|
||||
self.text_config = config.text_config
|
||||
|
||||
model_config = vllm_config.model_config
|
||||
tokenizer = cached_get_tokenizer(
|
||||
model_config.tokenizer,
|
||||
tokenizer_mode=model_config.tokenizer_mode,
|
||||
tokenizer_revision=model_config.tokenizer_revision,
|
||||
trust_remote_code=model_config.trust_remote_code,
|
||||
)
|
||||
self.image_token_id = tokenizer.vocab.get(_IMAGE_TOKEN)
|
||||
|
||||
self.vision = self._init_vision_module(self.vision_config,
|
||||
quant_config,
|
||||
maybe_prefix(prefix, "vision"))
|
||||
|
||||
self.projector = MlpProjector(self.projector_config)
|
||||
self.tile_tag = config.tile_tag
|
||||
self.global_view_pos = config.global_view_pos
|
||||
|
||||
# special token for image token sequence format
|
||||
embed_std = 1 / torch.sqrt(
|
||||
torch.tensor(self.projector_config.n_embed, dtype=torch.float32))
|
||||
if self.tile_tag == "2D":
|
||||
# <|view_separator|>, <|\n|>
|
||||
self.image_newline = nn.Parameter(
|
||||
torch.randn(self.projector_config.n_embed) * embed_std)
|
||||
# This is a typo in original implementation
|
||||
self.view_seperator = nn.Parameter(
|
||||
torch.randn(self.projector_config.n_embed) * embed_std)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Only 2D tile_tag is supported currently, got: {self.tile_tag}"
|
||||
)
|
||||
|
||||
self.language_model = init_vllm_registered_model(
|
||||
vllm_config=vllm_config,
|
||||
hf_config=self.text_config,
|
||||
prefix=maybe_prefix(prefix, "language"),
|
||||
architectures=["DeepseekV3ForCausalLM"]
|
||||
if self.text_config.topk_method == "noaux_tc" else
|
||||
["DeepseekV2ForCausalLM"],
|
||||
)
|
||||
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.language_model.make_empty_intermediate_tensors)
|
||||
|
||||
def _init_vision_module(
|
||||
self,
|
||||
vision_config: VisionEncoderConfig,
|
||||
quant_config: Optional[QuantizationConfig],
|
||||
prefix: str = "",
|
||||
) -> nn.Module:
|
||||
# TODO: refactor vision model through timm wrapper from transformers
|
||||
try:
|
||||
import timm
|
||||
except ImportError:
|
||||
raise ImportError("Please install timm") from ImportError
|
||||
|
||||
with set_default_torch_dtype(torch.float16):
|
||||
model = timm.create_model(
|
||||
"vit_so400m_patch14_siglip_384.webli",
|
||||
pretrained=False,
|
||||
num_classes=0,
|
||||
dynamic_img_size=True,
|
||||
dynamic_img_pad=True,
|
||||
)
|
||||
|
||||
model = model.to(dtype=torch.get_default_dtype())
|
||||
return model
|
||||
|
||||
@cached_property
|
||||
def sampler(self):
|
||||
if hasattr(self.language_model, "sampler"):
|
||||
return self.language_model.sampler
|
||||
|
||||
return get_sampler()
|
||||
|
||||
def _validate_pixel_values(
|
||||
self, data: Union[torch.Tensor, List[torch.Tensor]]
|
||||
) -> Union[torch.Tensor, List[torch.Tensor]]:
|
||||
|
||||
h = w = self.vision_config.image_size
|
||||
expected_dims = (3, h, w)
|
||||
|
||||
def _validate_shape(d: torch.Tensor):
|
||||
actual_dims = tuple(d.shape[1:])
|
||||
|
||||
if actual_dims != expected_dims:
|
||||
expected_expr = ("num_patches", *map(str, expected_dims))
|
||||
raise ValueError(
|
||||
"The expected shape of pixel values per image per batch "
|
||||
f"is {expected_expr}. You supplied {tuple(d.shape)}.")
|
||||
|
||||
for d in data:
|
||||
_validate_shape(d)
|
||||
|
||||
return data
|
||||
|
||||
def _validate_images_spatial_crop(
|
||||
self, data: Union[torch.Tensor, List[torch.Tensor]]
|
||||
) -> Union[torch.Tensor, List[torch.Tensor]]:
|
||||
expected_dims = 2
|
||||
|
||||
def _validate_shape(d: torch.Tensor):
|
||||
actual_dims = d.size(-1)
|
||||
|
||||
if actual_dims != expected_dims:
|
||||
expected_expr = str(expected_dims)
|
||||
raise ValueError(
|
||||
f"The expected shape of image sizes per image per batch "
|
||||
f"is {expected_expr}. You supplied {tuple(d.shape)}.")
|
||||
|
||||
for d in data:
|
||||
_validate_shape(d)
|
||||
|
||||
return data
|
||||
|
||||
def _parse_and_validate_image_input(
|
||||
self, **kwargs: object) -> Optional[DeepseekVL2ImageInputs]:
|
||||
pixel_values = kwargs.pop("pixel_values", None)
|
||||
images_spatial_crop = kwargs.pop("images_spatial_crop", None)
|
||||
image_embeds = kwargs.pop("image_embeds", None)
|
||||
|
||||
if pixel_values is None and image_embeds is None:
|
||||
return None
|
||||
|
||||
if pixel_values is not None:
|
||||
if not isinstance(pixel_values, (torch.Tensor, list)):
|
||||
raise ValueError("Incorrect type of pixel values. "
|
||||
f"Got type: {type(pixel_values)}")
|
||||
|
||||
if not isinstance(images_spatial_crop, (torch.Tensor, list)):
|
||||
raise ValueError("Incorrect type of image sizes. "
|
||||
f"Got type: {type(images_spatial_crop)}")
|
||||
|
||||
return DeepseekVL2ImagePixelInputs(
|
||||
type="pixel_values",
|
||||
data=self._validate_pixel_values(flatten_bn(pixel_values)),
|
||||
images_spatial_crop=self._validate_images_spatial_crop(
|
||||
flatten_bn(images_spatial_crop, concat=True)))
|
||||
|
||||
if image_embeds is not None:
|
||||
if not isinstance(image_embeds, torch.Tensor):
|
||||
raise ValueError("Incorrect type of image embeddings. "
|
||||
f"Got type: {type(image_embeds)}")
|
||||
|
||||
return DeepseekVL2VImageEmbeddingInputs(
|
||||
type="image_embeds",
|
||||
data=flatten_bn(image_embeds),
|
||||
)
|
||||
|
||||
raise AssertionError("This line should be unreachable.")
|
||||
|
||||
def _pixel_values_to_embedding(
|
||||
self,
|
||||
pixel_values: NestedTensors,
|
||||
images_spatial_crop: torch.Tensor,
|
||||
) -> NestedTensors:
|
||||
# Pixel_values: n_image * batch_size * [patch_per_img, 3, height, width]
|
||||
total_tiles = [x for x in pixel_values]
|
||||
|
||||
# [batch_all_tiles, 3, height, width]
|
||||
total_tiles = torch.cat(total_tiles, dim=0)
|
||||
|
||||
# [batch_all_tiles, vit_seq_len, c]
|
||||
images_feature = self.vision.forward_features(total_tiles)
|
||||
|
||||
# [batch_all_tiles, hw, D]
|
||||
images_embeds = self.projector(images_feature)
|
||||
|
||||
_, hw, n_dim = images_embeds.shape
|
||||
h = w = int(hw**0.5)
|
||||
|
||||
# 根据self.tile_tag & self.global_view_pos填充image token sequence
|
||||
tile_index = 0
|
||||
vision_embeddings = []
|
||||
for jdx in range(images_spatial_crop.size(0)):
|
||||
# extra global & local features
|
||||
num_width_tiles, num_height_tiles = images_spatial_crop[jdx]
|
||||
if num_width_tiles == 0 or num_height_tiles == 0:
|
||||
break
|
||||
num_tiles_in_image = num_width_tiles * num_height_tiles
|
||||
|
||||
# [hw, D]
|
||||
global_features = images_embeds[tile_index]
|
||||
|
||||
# [num_height_tiles * num_width_tiles, hw, D]
|
||||
local_features = images_embeds[tile_index + 1:tile_index + 1 +
|
||||
num_tiles_in_image]
|
||||
tile_index += num_tiles_in_image + 1
|
||||
|
||||
# format global and local features
|
||||
# ----------------- global view add newline -----------------
|
||||
# [hw, D] -> [h, w, D]
|
||||
global_features = global_features.view(h, w, n_dim)
|
||||
|
||||
# [D] -> [h, 1, D]
|
||||
new_lines_in_global = repeat(self.image_newline, "d -> h 1 d", h=h)
|
||||
|
||||
# cat([h, w, D], [h, 1, D], dim=1) -> [h, w + 1, D]
|
||||
global_features = torch.cat([global_features, new_lines_in_global],
|
||||
dim=1)
|
||||
|
||||
# [h, w + 1, D] -> [h * (w + 1), D]
|
||||
global_features = global_features.view(-1, n_dim)
|
||||
|
||||
# ----------------- local view add newline -----------------
|
||||
# [num_height_tiles * num_width_tiles, h * w, D] ->
|
||||
# [num_height_tiles * h, num_width_tiles * w, D]
|
||||
local_features = rearrange(local_features,
|
||||
"(th tw) (h w) d -> (th h) (tw w) d",
|
||||
th=num_height_tiles,
|
||||
tw=num_width_tiles,
|
||||
h=h,
|
||||
w=w)
|
||||
|
||||
# [D] -> [num_height_tiles * h, 1, D]
|
||||
new_lines_in_local = repeat(self.image_newline,
|
||||
"d -> (th h) 1 d",
|
||||
th=num_height_tiles,
|
||||
h=h)
|
||||
|
||||
# [num_height_tiles * h, num_width_tiles * w + 1, D]
|
||||
local_features = torch.cat([local_features, new_lines_in_local],
|
||||
dim=1)
|
||||
|
||||
# [num_height_tiles * h, num_width_tiles * w + 1, D]
|
||||
# --> [(num_height_tiles * h) * (num_width_tiles * w + 1), D]
|
||||
local_features = local_features.view(-1, n_dim)
|
||||
|
||||
# merge global and local tiles
|
||||
if self.global_view_pos == "head":
|
||||
global_local_features = torch.cat([
|
||||
global_features,
|
||||
self.view_seperator[None, :],
|
||||
local_features,
|
||||
])
|
||||
else:
|
||||
global_local_features = torch.cat([
|
||||
local_features,
|
||||
self.view_seperator[None, :],
|
||||
global_features,
|
||||
])
|
||||
|
||||
vision_embeddings.append(global_local_features)
|
||||
return vision_embeddings
|
||||
|
||||
def _process_image_input(
|
||||
self, image_input: DeepseekVL2ImageInputs) -> torch.Tensor:
|
||||
if image_input["type"] == "image_embeds":
|
||||
image_data = image_input["data"]
|
||||
if is_list_of(image_data, torch.Tensor):
|
||||
# it's already a list of tensors
|
||||
return image_data
|
||||
if len(image_data.shape) == 3:
|
||||
# 3D tensor
|
||||
return list(torch.unbind(image_data, dim=0))
|
||||
raise ValueError(
|
||||
"We expect batched 2D tensors;"
|
||||
"this can be either a list of 2D tensors or a single 3D tensor."
|
||||
)
|
||||
|
||||
pixel_values = image_input["data"]
|
||||
images_spatial_crop = image_input["images_spatial_crop"]
|
||||
|
||||
return self._pixel_values_to_embedding(
|
||||
pixel_values=pixel_values, images_spatial_crop=images_spatial_crop)
|
||||
|
||||
def get_multimodal_embeddings(self, **kwargs: object) -> torch.Tensor:
|
||||
image_input = self._parse_and_validate_image_input(**kwargs)
|
||||
if image_input is None:
|
||||
return None
|
||||
vision_embeddings = self._process_image_input(image_input)
|
||||
return vision_embeddings
|
||||
|
||||
def get_input_embeddings(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
multimodal_embeddings: Optional[NestedTensors] = None,
|
||||
) -> torch.Tensor:
|
||||
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
||||
if multimodal_embeddings is not None:
|
||||
inputs_embeds = merge_multimodal_embeddings(
|
||||
input_ids, inputs_embeds, multimodal_embeddings,
|
||||
self.image_token_id)
|
||||
return inputs_embeds
|
||||
|
||||
def forward(self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
**kwargs: object):
|
||||
|
||||
if intermediate_tensors is not None:
|
||||
inputs_embeds = None
|
||||
|
||||
# NOTE: In v1, inputs_embeds is always generated at model runner, this
|
||||
# condition is for v0 compatibility
|
||||
elif inputs_embeds is None:
|
||||
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
|
||||
inputs_embeds = self.get_input_embeddings(input_ids,
|
||||
vision_embeddings)
|
||||
input_ids = None
|
||||
|
||||
hidden_states = self.language_model(input_ids,
|
||||
positions,
|
||||
kv_caches,
|
||||
attn_metadata,
|
||||
intermediate_tensors,
|
||||
inputs_embeds=inputs_embeds)
|
||||
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.language_model.compute_logits(hidden_states,
|
||||
sampling_metadata)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
return self.language_model.sample(logits, sampling_metadata)
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str,
|
||||
torch.Tensor]]) -> Set[str]:
|
||||
|
||||
loader = AutoWeightsLoader(self)
|
||||
autoloaded_weights = loader.load_weights(weights,
|
||||
mapper=self.hf_to_vllm_mapper)
|
||||
return autoloaded_weights
|
@ -657,7 +657,7 @@ class MiniCPMV2_0(MiniCPMVBaseModel):
|
||||
quant_config: Optional[QuantizationConfig],
|
||||
prefix: str = "",
|
||||
) -> nn.Module:
|
||||
# TODO: refactor this vision model
|
||||
# TODO: refactor vision model through timm wrapper from transformers
|
||||
try:
|
||||
import timm
|
||||
except ImportError:
|
||||
|
@ -149,6 +149,7 @@ _MULTIMODAL_MODELS = {
|
||||
"ChameleonForConditionalGeneration": ("chameleon", "ChameleonForConditionalGeneration"), # noqa: E501
|
||||
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
|
||||
"ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"),
|
||||
"DeepseekVLV2ForCausalLM": ("deepseek_vl2", "DeepseekVLV2ForCausalLM"),
|
||||
"FuyuForCausalLM": ("fuyu", "FuyuForCausalLM"),
|
||||
"H2OVLChatModel": ("h2ovl", "H2OVLChatModel"),
|
||||
"InternVLChatModel": ("internvl", "InternVLChatModel"),
|
||||
|
@ -23,8 +23,9 @@ from vllm.logger import init_logger
|
||||
# yapf conflicts with isort for this block
|
||||
# yapf: disable
|
||||
from vllm.transformers_utils.configs import (ChatGLMConfig, Cohere2Config,
|
||||
DbrxConfig, EAGLEConfig,
|
||||
ExaoneConfig, H2OVLChatConfig,
|
||||
DbrxConfig, DeepseekVLV2Config,
|
||||
EAGLEConfig, ExaoneConfig,
|
||||
H2OVLChatConfig,
|
||||
InternVLChatConfig, JAISConfig,
|
||||
MedusaConfig, MllamaConfig,
|
||||
MLPSpeculatorConfig, MPTConfig,
|
||||
@ -54,6 +55,7 @@ _CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
|
||||
"chatglm": ChatGLMConfig,
|
||||
"cohere2": Cohere2Config,
|
||||
"dbrx": DbrxConfig,
|
||||
"deepseek_vl_v2": DeepseekVLV2Config,
|
||||
"mpt": MPTConfig,
|
||||
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
|
||||
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)
|
||||
|
@ -1,6 +1,7 @@
|
||||
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
|
||||
from vllm.transformers_utils.configs.cohere2 import Cohere2Config
|
||||
from vllm.transformers_utils.configs.dbrx import DbrxConfig
|
||||
from vllm.transformers_utils.configs.deepseek_vl2 import DeepseekVLV2Config
|
||||
from vllm.transformers_utils.configs.eagle import EAGLEConfig
|
||||
from vllm.transformers_utils.configs.exaone import ExaoneConfig
|
||||
# RWConfig is for the original tiiuae/falcon-40b(-instruct) and
|
||||
@ -25,6 +26,7 @@ __all__ = [
|
||||
"ChatGLMConfig",
|
||||
"Cohere2Config",
|
||||
"DbrxConfig",
|
||||
"DeepseekVLV2Config",
|
||||
"MPTConfig",
|
||||
"RWConfig",
|
||||
"H2OVLChatConfig",
|
||||
|
214
vllm/transformers_utils/configs/deepseek_vl2.py
Normal file
214
vllm/transformers_utils/configs/deepseek_vl2.py
Normal file
@ -0,0 +1,214 @@
|
||||
# adapted from https://github.com/deepseek-ai/DeepSeek-VL2/blob/faf18023f24b962b32d9f0a2d89e402a8d383a78/deepseek_vl2/models/modeling_deepseek_vl_v2.py#L115-L268
|
||||
from typing import Tuple
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class VisionEncoderConfig(PretrainedConfig):
|
||||
model_type: str = "vision"
|
||||
|
||||
model_name: str = "vit_so400m_patch14_siglip_384.webli"
|
||||
image_size: int = 384
|
||||
patch_size: int = 16
|
||||
width: int = 1024
|
||||
layers: int = 24
|
||||
heads: int = 16
|
||||
mlp_ratio: int = 4
|
||||
global_pool: str = "map"
|
||||
ignore_head: bool = True
|
||||
class_token: bool = False
|
||||
num_classes: int = 0
|
||||
use_checkpoint: bool = False
|
||||
weight_init: str = "skip"
|
||||
deterministic: bool = False
|
||||
num_recomputing_layers: int = 0
|
||||
|
||||
def __init__(self,
|
||||
model_name: str = "vit_so400m_patch14_siglip_384.webli",
|
||||
image_size: int = 384,
|
||||
patch_size: int = 16,
|
||||
width: int = 1024,
|
||||
layers: int = 24,
|
||||
heads: int = 16,
|
||||
mlp_ratio: int = 4,
|
||||
global_pool: str = "map",
|
||||
ignore_head: bool = True,
|
||||
class_token: bool = False,
|
||||
num_classes: int = 0,
|
||||
use_checkpoint: bool = False,
|
||||
**kwargs):
|
||||
self.model_name = model_name
|
||||
self.image_size = image_size
|
||||
self.patch_size = patch_size
|
||||
self.width = width
|
||||
self.layers = layers
|
||||
self.heads = heads
|
||||
self.mlp_ratio = mlp_ratio
|
||||
self.global_pool = global_pool
|
||||
self.ignore_head = ignore_head
|
||||
self.class_token = class_token
|
||||
self.num_classes = num_classes
|
||||
self.use_checkpoint = use_checkpoint
|
||||
|
||||
super().__init__(**kwargs)
|
||||
|
||||
|
||||
class MlpProjectorConfig(PretrainedConfig):
|
||||
model_type = "mlp_projector"
|
||||
projector_type: str = "downsample_mlp_gelu"
|
||||
input_dim: int = 1152
|
||||
n_embed: int = 2048
|
||||
depth: int = 2
|
||||
mlp_ratio: int = 1
|
||||
downsample_ratio: int = 2
|
||||
token_pooling: bool = False
|
||||
|
||||
def __init__(self,
|
||||
projector_type: str = "downsample_mlp_gelu",
|
||||
input_dim: int = 1152,
|
||||
n_embed: int = 2048,
|
||||
depth: int = 2,
|
||||
mlp_ratio: int = 1,
|
||||
downsample_ratio: int = 2,
|
||||
**kwargs):
|
||||
self.projector_type = projector_type
|
||||
self.input_dim = input_dim
|
||||
self.n_embed = n_embed
|
||||
self.depth = depth
|
||||
self.mlp_ratio = mlp_ratio
|
||||
self.downsample_ratio = downsample_ratio
|
||||
|
||||
super().__init__(**kwargs)
|
||||
|
||||
|
||||
class DeepseekV2Config(PretrainedConfig):
|
||||
|
||||
model_type = "deepseek_v2"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=102400,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
moe_intermediate_size=1407,
|
||||
num_hidden_layers=30,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=32,
|
||||
n_shared_experts=None,
|
||||
n_routed_experts=None,
|
||||
ep_size=1,
|
||||
routed_scaling_factor=1.0,
|
||||
kv_lora_rank=512,
|
||||
q_lora_rank=1536,
|
||||
qk_rope_head_dim=64,
|
||||
v_head_dim=128,
|
||||
qk_nope_head_dim=128,
|
||||
topk_method='gready',
|
||||
n_group=None,
|
||||
topk_group=None,
|
||||
num_experts_per_tok=None,
|
||||
moe_layer_freq=1,
|
||||
first_k_dense_replace=0,
|
||||
norm_topk_prob=False,
|
||||
scoring_func='softmax',
|
||||
aux_loss_alpha=0.001,
|
||||
seq_aux=True,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=None,
|
||||
bos_token_id=100000,
|
||||
eos_token_id=100001,
|
||||
pretraining_tp=1,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
attention_bias=False,
|
||||
attention_dropout=0.0,
|
||||
use_mla=True,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.moe_intermediate_size = moe_intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.n_shared_experts = n_shared_experts
|
||||
self.n_routed_experts = n_routed_experts
|
||||
self.ep_size = ep_size
|
||||
self.routed_scaling_factor = routed_scaling_factor
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.topk_method = topk_method
|
||||
self.n_group = n_group
|
||||
self.topk_group = topk_group
|
||||
self.num_experts_per_tok = num_experts_per_tok
|
||||
self.moe_layer_freq = moe_layer_freq
|
||||
self.first_k_dense_replace = first_k_dense_replace
|
||||
self.norm_topk_prob = norm_topk_prob
|
||||
self.scoring_func = scoring_func
|
||||
self.aux_loss_alpha = aux_loss_alpha
|
||||
self.seq_aux = seq_aux
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = float(rms_norm_eps)
|
||||
self.pretraining_tp = pretraining_tp
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self.attention_bias = attention_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
self.use_mla = use_mla
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class DeepseekVLV2Config(PretrainedConfig):
|
||||
model_type = "deepseek_vl_v2"
|
||||
vision_config: VisionEncoderConfig
|
||||
projector_config: MlpProjectorConfig
|
||||
|
||||
tile_tag: str = "2D"
|
||||
global_view_pos: str = "head"
|
||||
candidate_resolutions: Tuple[Tuple[int, int]] = ((384, 384), )
|
||||
|
||||
def __init__(self,
|
||||
tile_tag: str = "tile_tag",
|
||||
global_view_pos: str = "head",
|
||||
candidate_resolutions: Tuple[Tuple[int,
|
||||
int]] = ((384, 384), ),
|
||||
**kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
vision_config = kwargs.get("vision_config", {})
|
||||
self.vision_config = VisionEncoderConfig(**vision_config)
|
||||
|
||||
projector_config = kwargs.get("projector_config", {})
|
||||
self.projector_config = MlpProjectorConfig(**projector_config)
|
||||
|
||||
language_config = kwargs.get("language_config", {})
|
||||
self.text_config = DeepseekV2Config(**language_config)
|
||||
|
||||
self.tile_tag = tile_tag
|
||||
self.global_view_pos = global_view_pos
|
||||
self.candidate_resolutions = candidate_resolutions
|
||||
self.vocab_size = self.text_config.vocab_size
|
Loading…
x
Reference in New Issue
Block a user