Deepseek v3 (#11502)
Signed-off-by: mgoin <michael@neuralmagic.com> Co-authored-by: mgoin <michael@neuralmagic.com> Co-authored-by: robertgshaw2-neuralmagic <rshaw@neuralmagic.com>
This commit is contained in:
parent
55fb97f7bd
commit
f49777ba62
@ -113,6 +113,92 @@ __global__ void moe_align_block_size_kernel(scalar_t* __restrict__ topk_ids,
|
||||
}
|
||||
}
|
||||
|
||||
// TODO(simon): this is temporarily adapted from
|
||||
// https://github.com/sgl-project/sglang/commit/31548116a8dc8c6df7e146e0587335a59fc5b9d7
|
||||
// we did this to unblock Deepseek V3 but there should be a better
|
||||
// implementation to manage shared memory.
|
||||
template <typename scalar_t>
|
||||
__global__ void moe_align_block_size_global_mem_kernel(
|
||||
scalar_t* __restrict__ topk_ids, int32_t* sorted_token_ids,
|
||||
int32_t* expert_ids, int32_t* total_tokens_post_pad, int32_t num_experts,
|
||||
int32_t block_size, size_t numel, int32_t* tokens_cnts, int32_t* cumsum) {
|
||||
const size_t tokens_per_thread = CEILDIV(numel, blockDim.x);
|
||||
const size_t start_idx = threadIdx.x * tokens_per_thread;
|
||||
|
||||
for (int i = 0; i < num_experts; ++i) {
|
||||
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* In the first step we compute token_cnts[thread_index + 1][expert_index],
|
||||
* which counts how many tokens in the token shard of thread_index are
|
||||
* assigned to expert expert_index.
|
||||
*/
|
||||
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
|
||||
++tokens_cnts[index(num_experts, threadIdx.x + 1, topk_ids[i])];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// For each expert we accumulate the token counts from the different threads.
|
||||
if (threadIdx.x < num_experts) {
|
||||
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
|
||||
for (int i = 1; i <= blockDim.x; ++i) {
|
||||
tokens_cnts[index(num_experts, i, threadIdx.x)] +=
|
||||
tokens_cnts[index(num_experts, i - 1, threadIdx.x)];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// We accumulate the token counts of all experts in thread 0.
|
||||
if (threadIdx.x == 0) {
|
||||
cumsum[0] = 0;
|
||||
for (int i = 1; i <= num_experts; ++i) {
|
||||
cumsum[i] = cumsum[i - 1] +
|
||||
CEILDIV(tokens_cnts[index(num_experts, blockDim.x, i - 1)],
|
||||
block_size) *
|
||||
block_size;
|
||||
}
|
||||
*total_tokens_post_pad = cumsum[num_experts];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
/**
|
||||
* For each expert, each thread processes the tokens of the corresponding
|
||||
* blocks and stores the corresponding expert_id for each block.
|
||||
*/
|
||||
if (threadIdx.x < num_experts) {
|
||||
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
|
||||
i += block_size) {
|
||||
expert_ids[i / block_size] = threadIdx.x;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Each thread processes a token shard, calculating the index of each token
|
||||
* after sorting by expert number. Given the example topk_ids =
|
||||
* [0,1,2,1,2,3,0,3,4] and block_size = 4, then the output would be [0, 6, *,
|
||||
* *, 1, 3, *, *, 2, 4, *, *, 5, 7, *, *, 8, *, *, *], where * represents a
|
||||
* padding value(preset in python).
|
||||
*/
|
||||
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
|
||||
int32_t expert_id = topk_ids[i];
|
||||
/** The cumsum[expert_id] stores the starting index of the tokens that the
|
||||
* expert with expert_id needs to process, and
|
||||
* tokens_cnts[threadIdx.x][expert_id] stores the indices of the tokens
|
||||
* processed by the expert with expert_id within the current thread's token
|
||||
* shard.
|
||||
*/
|
||||
int32_t rank_post_pad =
|
||||
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] +
|
||||
cumsum[expert_id];
|
||||
sorted_token_ids[rank_post_pad] = i;
|
||||
++tokens_cnts[index(num_experts, threadIdx.x, expert_id)];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t, int TOPK>
|
||||
__global__ void moe_sum_kernel(
|
||||
scalar_t* __restrict__ out, // [..., d]
|
||||
@ -137,25 +223,61 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
||||
torch::Tensor experts_ids,
|
||||
torch::Tensor num_tokens_post_pad) {
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
VLLM_DISPATCH_INTEGRAL_TYPES(
|
||||
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
|
||||
// calc needed amount of shared mem for `tokens_cnts` and `cumsum`
|
||||
// tensors
|
||||
const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);
|
||||
const int32_t shared_mem =
|
||||
((num_thread + 1) * num_experts + (num_experts + 1)) *
|
||||
sizeof(int32_t);
|
||||
|
||||
// set dynamic shared mem
|
||||
auto kernel = vllm::moe::moe_align_block_size_kernel<scalar_t>;
|
||||
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
|
||||
(void*)kernel, shared_mem));
|
||||
kernel<<<1, num_thread, shared_mem, stream>>>(
|
||||
topk_ids.data_ptr<scalar_t>(), sorted_token_ids.data_ptr<int32_t>(),
|
||||
experts_ids.data_ptr<int32_t>(),
|
||||
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
|
||||
topk_ids.numel());
|
||||
});
|
||||
// If we have very large number of experts, we can no longer use shared
|
||||
// memory.
|
||||
// TODO(simon): the right solution should be calculating the exact right
|
||||
// amount of shared memory and use that. The num_experts >= 256 is just a
|
||||
// temporary solution to unblock Deepseek V3.
|
||||
if (num_experts >= 256) {
|
||||
VLLM_DISPATCH_INTEGRAL_TYPES(
|
||||
topk_ids.scalar_type(), "moe_align_block_size_global_mem_kernel", [&] {
|
||||
// calc needed amount of shared mem for `tokens_cnts` and `cumsum`
|
||||
// tensors
|
||||
const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);
|
||||
|
||||
const int32_t mem_tokens_cnts =
|
||||
((num_experts + 1) * num_experts) * sizeof(int32_t);
|
||||
const int32_t mem_cumsum = (num_experts + 1) * sizeof(int32_t);
|
||||
// allocate global memory
|
||||
int32_t* tokens_cnts;
|
||||
int32_t* cumsum;
|
||||
cudaMalloc(&tokens_cnts, mem_tokens_cnts);
|
||||
cudaMalloc(&cumsum, mem_cumsum);
|
||||
|
||||
auto kernel =
|
||||
vllm::moe::moe_align_block_size_global_mem_kernel<scalar_t>;
|
||||
kernel<<<1, num_thread, 0, stream>>>(
|
||||
topk_ids.data_ptr<scalar_t>(),
|
||||
sorted_token_ids.data_ptr<int32_t>(),
|
||||
experts_ids.data_ptr<int32_t>(),
|
||||
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
|
||||
topk_ids.numel(), tokens_cnts, cumsum);
|
||||
cudaFree(tokens_cnts);
|
||||
cudaFree(cumsum);
|
||||
});
|
||||
} else {
|
||||
VLLM_DISPATCH_INTEGRAL_TYPES(
|
||||
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
|
||||
// calc needed amount of shared mem for `tokens_cnts` and `cumsum`
|
||||
// tensors
|
||||
const int32_t num_thread = max((int32_t)num_experts, WARP_SIZE);
|
||||
const int32_t shared_mem =
|
||||
((num_thread + 1) * num_experts + (num_experts + 1)) *
|
||||
sizeof(int32_t);
|
||||
|
||||
// set dynamic shared mem
|
||||
auto kernel = vllm::moe::moe_align_block_size_kernel<scalar_t>;
|
||||
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
|
||||
(void*)kernel, shared_mem));
|
||||
kernel<<<1, num_thread, shared_mem, stream>>>(
|
||||
topk_ids.data_ptr<scalar_t>(),
|
||||
sorted_token_ids.data_ptr<int32_t>(),
|
||||
experts_ids.data_ptr<int32_t>(),
|
||||
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
|
||||
topk_ids.numel());
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void moe_sum(torch::Tensor& input, // [num_tokens, topk, hidden_size]
|
||||
|
@ -596,6 +596,12 @@ class ModelConfig:
|
||||
self.max_seq_len_to_capture = min(self.max_seq_len_to_capture,
|
||||
self.max_model_len)
|
||||
|
||||
if (self.hf_config.model_type == 'deepseek_v3'
|
||||
and not self.enforce_eager):
|
||||
logger.warning("CUDA graph is not supported for Deepseek V3 yet, "
|
||||
"fallback to the eager mode.")
|
||||
self.enforce_eager = True
|
||||
|
||||
def _verify_bnb_config(self) -> None:
|
||||
"""
|
||||
The current version of bitsandbytes (0.44.0) with 8-bit models does not
|
||||
@ -712,8 +718,9 @@ class ModelConfig:
|
||||
|
||||
def get_head_size(self) -> int:
|
||||
# TODO remove hard code
|
||||
if hasattr(self.hf_text_config, "model_type"
|
||||
) and self.hf_text_config.model_type == 'deepseek_v2':
|
||||
if hasattr(self.hf_text_config,
|
||||
"model_type") and (self.hf_text_config.model_type
|
||||
in ('deepseek_v2', 'deepseek_v3')):
|
||||
# FlashAttention supports only head_size 32, 64, 128, 256,
|
||||
# we need to pad head_size 192 to 256
|
||||
return 256
|
||||
|
@ -476,18 +476,29 @@ def fused_topk(
|
||||
return topk_weights, topk_ids
|
||||
|
||||
|
||||
# This is used by the Deepseek-V2 model
|
||||
# This is used by the Deepseek-V2 and Deepseek-V3 model
|
||||
def grouped_topk(hidden_states: torch.Tensor,
|
||||
gating_output: torch.Tensor,
|
||||
topk: int,
|
||||
renormalize: bool,
|
||||
num_expert_group: int = 0,
|
||||
topk_group: int = 0):
|
||||
topk_group: int = 0,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None):
|
||||
|
||||
assert hidden_states.shape[0] == gating_output.shape[0], (
|
||||
"Number of tokens mismatch")
|
||||
|
||||
scores = torch.softmax(gating_output, dim=-1)
|
||||
if scoring_func == "softmax":
|
||||
scores = torch.softmax(gating_output, dim=-1)
|
||||
elif scoring_func == "sigmoid":
|
||||
scores = gating_output.sigmoid()
|
||||
else:
|
||||
raise ValueError(f"Unsupported scoring function: {scoring_func}")
|
||||
|
||||
if e_score_correction_bias is not None:
|
||||
scores.add_(e_score_correction_bias.unsqueeze(0))
|
||||
|
||||
num_token = scores.shape[0]
|
||||
group_scores = scores.view(num_token, num_expert_group,
|
||||
-1).max(dim=-1).values # [n, n_group]
|
||||
|
@ -73,16 +73,18 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
||||
set_weight_attrs(w2_weight, extra_weight_attrs)
|
||||
|
||||
def apply(
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
router_logits: torch.Tensor,
|
||||
top_k: int,
|
||||
renormalize: bool,
|
||||
use_grouped_topk: bool,
|
||||
topk_group: Optional[int] = None,
|
||||
num_expert_group: Optional[int] = None,
|
||||
custom_routing_function: Optional[Callable] = None
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
router_logits: torch.Tensor,
|
||||
top_k: int,
|
||||
renormalize: bool,
|
||||
use_grouped_topk: bool,
|
||||
topk_group: Optional[int] = None,
|
||||
num_expert_group: Optional[int] = None,
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None
|
||||
) -> torch.Tensor:
|
||||
return self.forward(x=x,
|
||||
layer=layer,
|
||||
@ -92,19 +94,23 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
||||
use_grouped_topk=use_grouped_topk,
|
||||
topk_group=topk_group,
|
||||
num_expert_group=num_expert_group,
|
||||
custom_routing_function=custom_routing_function)
|
||||
custom_routing_function=custom_routing_function,
|
||||
scoring_func=scoring_func,
|
||||
e_score_correction_bias=e_score_correction_bias)
|
||||
|
||||
def forward_cuda(
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
use_grouped_topk: bool,
|
||||
top_k: int,
|
||||
router_logits: torch.Tensor,
|
||||
renormalize: bool,
|
||||
topk_group: Optional[int] = None,
|
||||
num_expert_group: Optional[int] = None,
|
||||
custom_routing_function: Optional[Callable] = None
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
use_grouped_topk: bool,
|
||||
top_k: int,
|
||||
router_logits: torch.Tensor,
|
||||
renormalize: bool,
|
||||
topk_group: Optional[int] = None,
|
||||
num_expert_group: Optional[int] = None,
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None
|
||||
) -> torch.Tensor:
|
||||
topk_weights, topk_ids = FusedMoE.select_experts(
|
||||
hidden_states=x,
|
||||
@ -114,7 +120,9 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
||||
renormalize=renormalize,
|
||||
topk_group=topk_group,
|
||||
num_expert_group=num_expert_group,
|
||||
custom_routing_function=custom_routing_function)
|
||||
custom_routing_function=custom_routing_function,
|
||||
scoring_func=scoring_func,
|
||||
e_score_correction_bias=e_score_correction_bias)
|
||||
|
||||
return fused_experts(hidden_states=x,
|
||||
w1=layer.w13_weight,
|
||||
@ -128,21 +136,29 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
||||
"The CPU backend currently does not support MoE.")
|
||||
|
||||
def forward_tpu(
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
use_grouped_topk: bool,
|
||||
top_k: int,
|
||||
router_logits: torch.Tensor,
|
||||
renormalize: bool,
|
||||
topk_group: Optional[int] = None,
|
||||
num_expert_group: Optional[int] = None,
|
||||
custom_routing_function: Optional[Callable] = None
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
use_grouped_topk: bool,
|
||||
top_k: int,
|
||||
router_logits: torch.Tensor,
|
||||
renormalize: bool,
|
||||
topk_group: Optional[int] = None,
|
||||
num_expert_group: Optional[int] = None,
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None
|
||||
) -> torch.Tensor:
|
||||
assert not use_grouped_topk
|
||||
assert num_expert_group is None
|
||||
assert topk_group is None
|
||||
assert custom_routing_function is None
|
||||
if scoring_func != "softmax":
|
||||
raise NotImplementedError(
|
||||
"Only softmax scoring function is supported for TPU.")
|
||||
if e_score_correction_bias is not None:
|
||||
raise NotImplementedError(
|
||||
"Expert score correction bias is not supported for TPU.")
|
||||
return fused_moe_pallas(hidden_states=x,
|
||||
w1=layer.w13_weight,
|
||||
w2=layer.w2_weight,
|
||||
@ -156,7 +172,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
|
||||
class FusedMoE(torch.nn.Module):
|
||||
"""FusedMoE layer for MoE models.
|
||||
|
||||
This layer contains both MergedColumnParallel weights (gate_up_proj /
|
||||
This layer contains both MergedColumnParallel weights (gate_up_proj /
|
||||
w13) and RowParallelLinear weights (down_proj/ w2).
|
||||
|
||||
Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We
|
||||
@ -190,6 +206,8 @@ class FusedMoE(torch.nn.Module):
|
||||
tp_size: Optional[int] = None,
|
||||
prefix: str = "",
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@ -210,6 +228,12 @@ class FusedMoE(torch.nn.Module):
|
||||
self.num_expert_group = num_expert_group
|
||||
self.topk_group = topk_group
|
||||
self.custom_routing_function = custom_routing_function
|
||||
self.scoring_func = scoring_func
|
||||
self.e_score_correction_bias = e_score_correction_bias
|
||||
|
||||
if self.scoring_func != "softmax" and not self.use_grouped_topk:
|
||||
raise ValueError("Only softmax scoring function is supported for "
|
||||
"non-grouped topk.")
|
||||
|
||||
if quant_config is None:
|
||||
self.quant_method: Optional[QuantizeMethodBase] = (
|
||||
@ -446,7 +470,9 @@ class FusedMoE(torch.nn.Module):
|
||||
renormalize: bool,
|
||||
topk_group: Optional[int] = None,
|
||||
num_expert_group: Optional[int] = None,
|
||||
custom_routing_function: Optional[Callable] = None):
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None):
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
||||
fused_topk, grouped_topk)
|
||||
|
||||
@ -460,7 +486,9 @@ class FusedMoE(torch.nn.Module):
|
||||
topk=top_k,
|
||||
renormalize=renormalize,
|
||||
num_expert_group=num_expert_group,
|
||||
topk_group=topk_group)
|
||||
topk_group=topk_group,
|
||||
scoring_func=scoring_func,
|
||||
e_score_correction_bias=e_score_correction_bias)
|
||||
elif custom_routing_function is None:
|
||||
topk_weights, topk_ids = fused_topk(hidden_states=hidden_states,
|
||||
gating_output=router_logits,
|
||||
@ -489,7 +517,9 @@ class FusedMoE(torch.nn.Module):
|
||||
use_grouped_topk=self.use_grouped_topk,
|
||||
topk_group=self.topk_group,
|
||||
num_expert_group=self.num_expert_group,
|
||||
custom_routing_function=self.custom_routing_function)
|
||||
custom_routing_function=self.custom_routing_function,
|
||||
scoring_func=self.scoring_func,
|
||||
e_score_correction_bias=self.e_score_correction_bias)
|
||||
|
||||
if self.reduce_results and self.tp_size > 1:
|
||||
final_hidden_states = tensor_model_parallel_all_reduce(
|
||||
|
@ -605,6 +605,8 @@ class Fp8MoEMethod(FusedMoEMethodBase):
|
||||
topk_group: Optional[int] = None,
|
||||
num_expert_group: Optional[int] = None,
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
from vllm.model_executor.layers.fused_moe import fused_experts
|
||||
@ -617,7 +619,10 @@ class Fp8MoEMethod(FusedMoEMethodBase):
|
||||
renormalize=renormalize,
|
||||
topk_group=topk_group,
|
||||
num_expert_group=num_expert_group,
|
||||
custom_routing_function=custom_routing_function)
|
||||
custom_routing_function=custom_routing_function,
|
||||
scoring_func=scoring_func,
|
||||
e_score_correction_bias=e_score_correction_bias,
|
||||
)
|
||||
|
||||
return fused_experts(
|
||||
x,
|
||||
|
650
vllm/model_executor/models/deepseek_v3.py
Normal file
650
vllm/model_executor/models/deepseek_v3.py
Normal file
@ -0,0 +1,650 @@
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only DeepseekV3 model."""
|
||||
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.config import CacheConfig, VllmConfig
|
||||
from vllm.distributed import (get_pp_group,
|
||||
get_tensor_model_parallel_world_size,
|
||||
tensor_model_parallel_all_reduce)
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.fused_moe import FusedMoE
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
MergedColumnParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsPP
|
||||
from .utils import (PPMissingLayer, is_pp_missing_parameter,
|
||||
make_empty_intermediate_tensors_factory, make_layers,
|
||||
maybe_prefix)
|
||||
|
||||
|
||||
class DeepseekV3MLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
reduce_results: bool = True,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
hidden_size, [intermediate_size] * 2,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.gate_up_proj")
|
||||
self.down_proj = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
reduce_results=reduce_results,
|
||||
prefix=f"{prefix}.down_proj")
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class DeepseekV3MoE(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
):
|
||||
super().__init__()
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.routed_scaling_factor = config.routed_scaling_factor
|
||||
self.n_shared_experts = config.n_shared_experts
|
||||
self.routed_scaling_factor = config.routed_scaling_factor
|
||||
if self.tp_size > config.n_routed_experts:
|
||||
raise ValueError(
|
||||
f"Tensor parallel size {self.tp_size} is greater than "
|
||||
f"the number of experts {config.n_routed_experts}.")
|
||||
|
||||
if config.hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {config.hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
|
||||
self.gate = ReplicatedLinear(config.hidden_size,
|
||||
config.n_routed_experts,
|
||||
bias=False,
|
||||
quant_config=None,
|
||||
prefix=f"{prefix}.gate")
|
||||
if config.topk_method == "noaux_tc":
|
||||
self.gate.e_score_correction_bias = nn.Parameter(
|
||||
torch.empty(config.n_routed_experts))
|
||||
else:
|
||||
self.gate.e_score_correction_bias = None
|
||||
|
||||
self.experts = FusedMoE(
|
||||
num_experts=config.n_routed_experts,
|
||||
top_k=config.num_experts_per_tok,
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=config.moe_intermediate_size,
|
||||
reduce_results=False,
|
||||
renormalize=config.norm_topk_prob,
|
||||
quant_config=quant_config,
|
||||
use_grouped_topk=True,
|
||||
num_expert_group=config.n_group,
|
||||
topk_group=config.topk_group,
|
||||
prefix=f"{prefix}.experts",
|
||||
scoring_func=config.scoring_func,
|
||||
e_score_correction_bias=self.gate.e_score_correction_bias)
|
||||
|
||||
if config.n_shared_experts is not None:
|
||||
intermediate_size = (config.moe_intermediate_size *
|
||||
config.n_shared_experts)
|
||||
self.shared_experts = DeepseekV3MLP(
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
reduce_results=False,
|
||||
)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
num_tokens, hidden_dim = hidden_states.shape
|
||||
hidden_states = hidden_states.view(-1, hidden_dim)
|
||||
if self.n_shared_experts is not None:
|
||||
shared_output = self.shared_experts(hidden_states)
|
||||
# router_logits: (num_tokens, n_experts)
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
final_hidden_states = self.experts(
|
||||
hidden_states=hidden_states,
|
||||
router_logits=router_logits) * self.routed_scaling_factor
|
||||
if shared_output is not None:
|
||||
final_hidden_states = final_hidden_states + shared_output
|
||||
if self.tp_size > 1:
|
||||
final_hidden_states = tensor_model_parallel_all_reduce(
|
||||
final_hidden_states)
|
||||
|
||||
return final_hidden_states.view(num_tokens, hidden_dim)
|
||||
|
||||
|
||||
def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
|
||||
import math
|
||||
if scale <= 1:
|
||||
return 1.0
|
||||
return 0.1 * mscale * math.log(scale) + 1.0
|
||||
|
||||
|
||||
class DeepseekV3Attention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
qk_nope_head_dim: int,
|
||||
qk_rope_head_dim: int,
|
||||
v_head_dim: int,
|
||||
q_lora_rank: int,
|
||||
kv_lora_rank: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.num_heads = num_heads
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
assert num_heads % tp_size == 0
|
||||
self.num_local_heads = num_heads // tp_size
|
||||
self.scaling = self.qk_head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
if self.q_lora_rank is not None:
|
||||
self.q_a_proj = ReplicatedLinear(self.hidden_size,
|
||||
self.q_lora_rank,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.q_a_proj")
|
||||
self.q_a_layernorm = RMSNorm(self.q_lora_rank,
|
||||
eps=config.rms_norm_eps)
|
||||
self.q_b_proj = ColumnParallelLinear(q_lora_rank,
|
||||
self.num_heads *
|
||||
self.qk_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.q_b_proj")
|
||||
else:
|
||||
self.q_proj = ColumnParallelLinear(self.hidden_size,
|
||||
self.num_heads *
|
||||
self.qk_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.q_proj")
|
||||
|
||||
self.kv_a_proj_with_mqa = ReplicatedLinear(
|
||||
self.hidden_size,
|
||||
self.kv_lora_rank + self.qk_rope_head_dim,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.kv_a_proj_with_mqa")
|
||||
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
|
||||
eps=config.rms_norm_eps)
|
||||
self.kv_b_proj = ColumnParallelLinear(
|
||||
self.kv_lora_rank,
|
||||
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.kv_b_proj")
|
||||
# O projection.
|
||||
self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj")
|
||||
rope_scaling["rope_type"] = 'deepseek_yarn'
|
||||
self.rotary_emb = get_rope(qk_rope_head_dim,
|
||||
rotary_dim=qk_rope_head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
is_neox_style=False)
|
||||
|
||||
if rope_scaling:
|
||||
mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
|
||||
scaling_factor = rope_scaling["factor"]
|
||||
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
|
||||
self.scaling = self.scaling * mscale * mscale
|
||||
|
||||
# self.attn = Attention(self.num_heads,
|
||||
# self.qk_head_dim,
|
||||
# self.scaling,
|
||||
# num_kv_heads=self.num_heads)
|
||||
|
||||
# TODO, support head_size 192
|
||||
self.attn = Attention(self.num_local_heads,
|
||||
256,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_local_heads,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.attn")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
if self.q_lora_rank is not None:
|
||||
q = self.q_a_proj(hidden_states)[0]
|
||||
q = self.q_a_layernorm(q)
|
||||
q = self.q_b_proj(q)[0].view(-1, self.num_local_heads,
|
||||
self.qk_head_dim)
|
||||
else:
|
||||
q = self.q_proj(hidden_states)[0].view(-1, self.num_local_heads,
|
||||
self.qk_head_dim)
|
||||
q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim],
|
||||
dim=-1)
|
||||
latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
|
||||
kv_a, _ = latent_cache.split(
|
||||
[self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
||||
latent_cache = latent_cache.unsqueeze(1)
|
||||
kv_a = self.kv_a_layernorm(kv_a.contiguous())
|
||||
kv = self.kv_b_proj(kv_a)[0]
|
||||
kv = kv.view(-1, self.num_local_heads,
|
||||
self.qk_nope_head_dim + self.v_head_dim)
|
||||
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
||||
k_pe = latent_cache[:, :, self.kv_lora_rank:]
|
||||
q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
|
||||
q[..., self.qk_nope_head_dim:] = q_pe
|
||||
k = torch.empty_like(q)
|
||||
k[..., :self.qk_nope_head_dim] = k_nope
|
||||
k[..., self.qk_nope_head_dim:] = k_pe
|
||||
q = torch.nn.functional.pad(q, [0, 256 - self.qk_head_dim],
|
||||
value=0).view(-1,
|
||||
self.num_local_heads * 256)
|
||||
k = torch.nn.functional.pad(k, [0, 256 - self.qk_head_dim],
|
||||
value=0).view(-1,
|
||||
self.num_local_heads * 256)
|
||||
v = torch.nn.functional.pad(v, [0, 256 - self.v_head_dim],
|
||||
value=0).view(-1,
|
||||
self.num_local_heads * 256)
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||
attn_output = attn_output.view(
|
||||
-1, self.num_local_heads, 256)[..., :self.v_head_dim].reshape(
|
||||
-1, self.num_local_heads * self.v_head_dim)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class DeepseekV3DecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
prefix: str,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
# DecoderLayers are created with `make_layers` which passes the prefix
|
||||
# with the layer's index.
|
||||
layer_idx = int(prefix.split(sep='.')[-1])
|
||||
self.self_attn = DeepseekV3Attention(
|
||||
config=config,
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
qk_nope_head_dim=config.qk_nope_head_dim,
|
||||
qk_rope_head_dim=config.qk_rope_head_dim,
|
||||
v_head_dim=config.v_head_dim,
|
||||
q_lora_rank=config.q_lora_rank
|
||||
if hasattr(config, "q_lora_rank") else None,
|
||||
kv_lora_rank=config.kv_lora_rank,
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
if (config.n_routed_experts is not None
|
||||
and layer_idx >= config.first_k_dense_replace
|
||||
and layer_idx % config.moe_layer_freq == 0):
|
||||
self.mlp = DeepseekV3MoE(
|
||||
config=config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
else:
|
||||
self.mlp = DeepseekV3MLP(
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
# TODO(simon): check whether we support torch compile for Deepseek V3
|
||||
# @support_torch_compile
|
||||
class DeepseekV3Model(nn.Module):
|
||||
|
||||
fall_back_to_pt_during_load = False
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
|
||||
config = vllm_config.model_config.hf_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
if get_pp_group().is_first_rank:
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
else:
|
||||
self.embed_tokens = PPMissingLayer()
|
||||
|
||||
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||
config.num_hidden_layers,
|
||||
lambda prefix: DeepseekV3DecoderLayer(
|
||||
config,
|
||||
prefix,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
),
|
||||
prefix=f"{prefix}.layers")
|
||||
|
||||
if get_pp_group().is_last_rank:
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
else:
|
||||
self.norm = PPMissingLayer()
|
||||
self.make_empty_intermediate_tensors = (
|
||||
make_empty_intermediate_tensors_factory(
|
||||
["hidden_states", "residual"], config.hidden_size))
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.embed_tokens(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
intermediate_tensors: Optional[IntermediateTensors],
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
if get_pp_group().is_first_rank:
|
||||
if inputs_embeds is not None:
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
hidden_states = self.get_input_embeddings(input_ids)
|
||||
residual = None
|
||||
else:
|
||||
assert intermediate_tensors is not None
|
||||
hidden_states = intermediate_tensors["hidden_states"]
|
||||
residual = intermediate_tensors["residual"]
|
||||
|
||||
for i in range(self.start_layer, self.end_layer):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(positions, hidden_states,
|
||||
kv_caches[i - self.start_layer],
|
||||
attn_metadata, residual)
|
||||
|
||||
if not get_pp_group().is_last_rank:
|
||||
return IntermediateTensors({
|
||||
"hidden_states": hidden_states,
|
||||
"residual": residual
|
||||
})
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class DeepseekV3ForCausalLM(nn.Module, SupportsPP):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
self.config = config
|
||||
self.quant_config = quant_config
|
||||
self.model = DeepseekV3Model(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(prefix, "model"))
|
||||
self.lm_head = ParallelLMHead(config.vocab_size,
|
||||
config.hidden_size,
|
||||
quant_config=quant_config)
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
self.sampler = get_sampler()
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.model.get_input_embeddings(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
attn_metadata, intermediate_tensors,
|
||||
inputs_embeds)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: Optional[torch.Tensor],
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def make_empty_intermediate_tensors(
|
||||
self, batch_size: int, dtype: torch.dtype,
|
||||
device: torch.device) -> IntermediateTensors:
|
||||
return IntermediateTensors({
|
||||
"hidden_states":
|
||||
torch.zeros((batch_size, self.config.hidden_size),
|
||||
dtype=dtype,
|
||||
device=device),
|
||||
"residual":
|
||||
torch.zeros((batch_size, self.config.hidden_size),
|
||||
dtype=dtype,
|
||||
device=device),
|
||||
})
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str,
|
||||
torch.Tensor]]) -> Set[str]:
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
|
||||
# Params for weights, fp8 weight scales, fp8 activation scales
|
||||
# (param_name, weight_name, expert_id, shard_id)
|
||||
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
||||
ckpt_gate_proj_name="gate_proj",
|
||||
ckpt_down_proj_name="down_proj",
|
||||
ckpt_up_proj_name="up_proj",
|
||||
num_experts=self.config.n_routed_experts)
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: Set[str] = set()
|
||||
for name, loaded_weight in weights:
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
|
||||
# TODO(simon): support nextn predict layers
|
||||
if self.config.num_nextn_predict_layers > 0:
|
||||
assert self.config.num_nextn_predict_layers == 1
|
||||
layer_idx = self.config.num_hidden_layers
|
||||
if name.startswith(f"model.layers.{layer_idx}"):
|
||||
continue
|
||||
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
# Skip non-stacked layers and experts (experts handled below).
|
||||
if weight_name not in name:
|
||||
continue
|
||||
# We have mlp.experts[0].gate_proj in the checkpoint.
|
||||
# Since we handle the experts below in expert_params_mapping,
|
||||
# we need to skip here BEFORE we update the name, otherwise
|
||||
# name will be updated to mlp.experts[0].gate_up_proj, which
|
||||
# will then be updated below in expert_params_mapping
|
||||
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
||||
if (("mlp.experts." in name) and name not in params_dict):
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
for mapping in expert_params_mapping:
|
||||
param_name, weight_name, expert_id, shard_id = mapping
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param,
|
||||
loaded_weight,
|
||||
name,
|
||||
shard_id=shard_id,
|
||||
expert_id=expert_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
if name not in params_dict:
|
||||
for key in params_dict:
|
||||
print(key)
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
loaded_params.add(name)
|
||||
return loaded_params
|
@ -45,6 +45,7 @@ _TEXT_GENERATION_MODELS = {
|
||||
"DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"),
|
||||
"DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"),
|
||||
"DeepseekV2ForCausalLM": ("deepseek_v2", "DeepseekV2ForCausalLM"),
|
||||
"DeepseekV3ForCausalLM": ("deepseek_v3", "DeepseekV3ForCausalLM"),
|
||||
"ExaoneForCausalLM": ("exaone", "ExaoneForCausalLM"),
|
||||
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
|
||||
"GemmaForCausalLM": ("gemma", "GemmaForCausalLM"),
|
||||
|
Loading…
x
Reference in New Issue
Block a user