[VLM] Fix paligemma, fuyu and persimmon with transformers 4.45 : use config.text_config.vocab_size (#8707)
This commit is contained in:
parent
a79e522984
commit
f2bd246c17
@ -229,7 +229,7 @@ class FuyuForCausalLM(nn.Module, SupportsMultiModal):
|
||||
self.multimodal_config = multimodal_config
|
||||
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
self.vocab_size = config.text_config.vocab_size
|
||||
self.image_token_id = _IMAGE_TOKEN_ID
|
||||
self.image_feature_size = config.patch_size**2 * config.num_channels
|
||||
|
||||
|
@ -152,7 +152,8 @@ class PaliGemmaForConditionalGeneration(nn.Module, SupportsMultiModal):
|
||||
self.unpadded_vocab_size = config.text_config.vocab_size
|
||||
logit_scale = getattr(config, "logit_scale", 1.0)
|
||||
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
||||
config.vocab_size, logit_scale)
|
||||
config.text_config.vocab_size,
|
||||
logit_scale)
|
||||
self.sampler = Sampler()
|
||||
|
||||
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
|
||||
|
@ -213,10 +213,10 @@ class PersimmonModel(nn.Module):
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None):
|
||||
super().__init__()
|
||||
self.vocab_size = config.vocab_size
|
||||
self.vocab_size = config.text_config.vocab_size
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
|
||||
config.hidden_size)
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.text_config.vocab_size, config.hidden_size)
|
||||
self.layers = nn.ModuleList([
|
||||
PersimmonDecoderLayer(config,
|
||||
cache_config=cache_config,
|
||||
@ -257,14 +257,14 @@ class PersimmonForCausalLM(nn.Module):
|
||||
quant_config: Optional[QuantizationConfig] = None):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.vocab_size = config.vocab_size
|
||||
self.vocab_size = config.text_config.vocab_size
|
||||
self.model = PersimmonModel(config,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config)
|
||||
self.lm_head = ParallelLMHead(config.vocab_size,
|
||||
self.lm_head = ParallelLMHead(config.text_config.vocab_size,
|
||||
config.hidden_size,
|
||||
bias=False)
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
self.logits_processor = LogitsProcessor(config.text_config.vocab_size)
|
||||
self.sampler = Sampler()
|
||||
|
||||
def forward(
|
||||
|
Loading…
x
Reference in New Issue
Block a user