[Model]: add some tests for aria model (#10770)

Signed-off-by: xffxff <1247714429@qq.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
This commit is contained in:
zhou fan 2024-12-02 13:36:36 +08:00 committed by GitHub
parent 995a148575
commit ef31eabc68
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 51 additions and 3 deletions

View File

@ -656,6 +656,7 @@ class VllmRunner:
model_name: str,
task: TaskOption = "auto",
tokenizer_name: Optional[str] = None,
tokenizer_mode: str = "auto",
# Use smaller max model length, otherwise bigger model cannot run due
# to kv cache size limit.
max_model_len: int = 1024,
@ -672,6 +673,7 @@ class VllmRunner:
model=model_name,
task=task,
tokenizer=tokenizer_name,
tokenizer_mode=tokenizer_mode,
trust_remote_code=True,
dtype=dtype,
swap_space=swap_space,
@ -842,6 +844,7 @@ class VllmRunner:
audios: Optional[PromptAudioInput] = None,
videos: Optional[PromptVideoInput] = None,
stop_token_ids: Optional[List[int]] = None,
stop: Optional[List[str]] = None,
) -> Union[List[TokensTextLogprobs],
List[TokensTextLogprobsPromptLogprobs]]:
greedy_logprobs_params = SamplingParams(
@ -849,7 +852,8 @@ class VllmRunner:
max_tokens=max_tokens,
logprobs=num_logprobs,
prompt_logprobs=num_prompt_logprobs,
stop_token_ids=stop_token_ids)
stop_token_ids=stop_token_ids,
stop=stop)
return self.generate_w_logprobs(prompts,
greedy_logprobs_params,

View File

@ -8,6 +8,7 @@ from typing import Type
import pytest
import transformers
from transformers import AutoModelForVision2Seq
from transformers.utils import is_flash_attn_2_available
from vllm.platforms import current_platform
from vllm.utils import cuda_device_count_stateless, identity
@ -134,6 +135,35 @@ VLM_TEST_SETTINGS = {
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
#### Extended model tests
"aria": VLMTestInfo(
models=["rhymes-ai/Aria"],
tokenizer_mode="slow",
test_type=(
VLMTestType.IMAGE,
VLMTestType.MULTI_IMAGE,
),
dtype="bfloat16",
prompt_formatter=lambda img_prompt: f"<|im_start|>user\n{img_prompt}<|im_end|>\n<|im_start|>assistant\n ", # noqa: E501
img_idx_to_prompt=lambda idx: "<fim_prefix><|img|><fim_suffix>\n",
max_model_len=4096,
max_num_seqs=2,
single_image_prompts=IMAGE_ASSETS.prompts({
"stop_sign": "<vlm_image>Please describe the image shortly.",
"cherry_blossom": "<vlm_image>Please infer the season with reason.",
}),
multi_image_prompt="<vlm_image><vlm_image>Describe the two images shortly.", # noqa: E501
postprocess_inputs=model_utils.get_key_type_post_processor("pixel_values"),
stop_str=["<|im_end|>"],
image_size_factors=[(0.10, 0.15)],
max_tokens=64,
marks=[
pytest.mark.skipif(
not is_flash_attn_2_available(),
reason="Model needs flash-attn for numeric convergence.",
),
large_gpu_mark(min_gb=64),
],
),
"blip2": VLMTestInfo(
models=["Salesforce/blip2-opt-2.7b"],
test_type=VLMTestType.IMAGE,

View File

@ -29,6 +29,8 @@ def run_test(
postprocess_inputs: Callable[[BatchEncoding], BatchEncoding],
comparator: Callable[..., None],
get_stop_token_ids: Optional[Callable[[AutoTokenizer], List[int]]],
stop_str: Optional[List[str]],
tokenizer_mode: str,
limit_mm_per_prompt: Dict[str, int],
model_kwargs: Optional[Dict[str, Any]],
patch_hf_runner: Optional[Callable[[HfRunner], HfRunner]],
@ -50,11 +52,14 @@ def run_test(
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).
vllm_kwargs = {}
vllm_kwargs: Dict[str, Any] = {}
if get_stop_token_ids is not None:
vllm_kwargs["stop_token_ids"] = get_stop_token_ids(tokenizer)
if stop_str:
vllm_kwargs["stop"] = stop_str
with vllm_runner(model,
tokenizer_mode=tokenizer_mode,
max_model_len=max_model_len,
max_num_seqs=max_num_seqs,
dtype=dtype,
@ -85,6 +90,8 @@ def run_test(
hf_kwargs = {}
if use_tokenizer_eos:
hf_kwargs["eos_token_id"] = tokenizer.eos_token_id
if stop_str:
hf_kwargs["stop_strings"] = stop_str
with hf_model, torch.no_grad():
for prompts, media in inputs:
@ -138,4 +145,4 @@ def process_runner_outputs(
def process_outputs(output_processor, model, outputs_per_image):
"""Applies a model specific post-processor function to a runner's output"""
return [[output_processor(res, model) for res in outputs]
for outputs in outputs_per_image]
for outputs in outputs_per_image]

View File

@ -97,6 +97,9 @@ class VLMTestInfo(NamedTuple):
# Optional callable which gets a list of token IDs from the model tokenizer
get_stop_token_ids: Optional[Callable[[AutoTokenizer], List[int]]] = None
# Optional list of strings to stop generation, useful when stop tokens are
# not special tokens in the tokenizer
stop_str: Optional[List[str]] = None
# Exposed options for HF runner
model_kwargs: Optional[Dict[str, Any]] = None
@ -148,6 +151,8 @@ class VLMTestInfo(NamedTuple):
marks: Optional[List[MarkDecorator]] = None
tokenizer_mode: str = "auto"
def get_non_parametrized_runner_kwargs(self):
"""Returns a dictionary of expandable kwargs for items that are used
in all test types, which are NOT used when creating the parametrized
@ -166,8 +171,10 @@ class VLMTestInfo(NamedTuple):
"postprocess_inputs": self.postprocess_inputs,
"comparator": self.comparator,
"get_stop_token_ids": self.get_stop_token_ids,
"stop_str": self.stop_str,
"model_kwargs": self.model_kwargs,
"patch_hf_runner": self.patch_hf_runner,
"tokenizer_mode": self.tokenizer_mode
}