[Model] Snowflake arctic model implementation (#4652)
Co-authored-by: Dash Desai <1723932+iamontheinet@users.noreply.github.com> Co-authored-by: Aurick Qiao <qiao@aurick.net> Co-authored-by: Aurick Qiao <aurick.qiao@snowflake.com> Co-authored-by: Aurick Qiao <aurickq@users.noreply.github.com> Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
This commit is contained in:
parent
be0c5180ac
commit
ebce310b74
26
examples/offline_inference_arctic.py
Normal file
26
examples/offline_inference_arctic.py
Normal file
@ -0,0 +1,26 @@
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
# Sample prompts.
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
# Create a sampling params object.
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
# Create an LLM.
|
||||
llm = LLM(model="snowflake/snowflake-arctic-instruct",
|
||||
quantization="deepspeedfp",
|
||||
tensor_parallel_size=8,
|
||||
trust_remote_code=True)
|
||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||
# that contain the prompt, generated text, and other information.
|
||||
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
# Print the outputs.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
@ -1,7 +1,9 @@
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
||||
fused_moe, get_config_file_name)
|
||||
fused_experts, fused_moe, fused_topk, get_config_file_name)
|
||||
|
||||
__all__ = [
|
||||
"fused_moe",
|
||||
"fused_topk",
|
||||
"fused_experts",
|
||||
"get_config_file_name",
|
||||
]
|
||||
|
@ -308,60 +308,16 @@ def get_moe_configs(E: int, N: int,
|
||||
return None
|
||||
|
||||
|
||||
def fused_moe(
|
||||
def fused_topk(
|
||||
hidden_states: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
gating_output: torch.Tensor,
|
||||
topk: int,
|
||||
renormalize: bool,
|
||||
inplace: bool = False,
|
||||
override_config: Optional[Dict[str, Any]] = None,
|
||||
use_fp8: bool = False,
|
||||
w1_scale: Optional[torch.Tensor] = None,
|
||||
w2_scale: Optional[torch.Tensor] = None,
|
||||
a1_scale: Optional[torch.Tensor] = None,
|
||||
a2_scale: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
This function computes a Mixture of Experts (MoE) layer using two sets of
|
||||
weights, w1 and w2, and top-k gating mechanism.
|
||||
|
||||
Parameters:
|
||||
- hidden_states (torch.Tensor): The input tensor to the MoE layer.
|
||||
- w1 (torch.Tensor): The first set of expert weights.
|
||||
- w2 (torch.Tensor): The second set of expert weights.
|
||||
- gating_output (torch.Tensor): The output of the gating operation
|
||||
(before softmax).
|
||||
- topk (int): The number of top-k experts to select.
|
||||
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
|
||||
- inplace (bool): If True, perform the operation in-place.
|
||||
Defaults to False.
|
||||
- override_config (Optional[Dict[str, Any]]): Optional override
|
||||
for the kernel configuration.
|
||||
- use_fp8 (bool): If True, use fp8 arithmetic to compute the inner
|
||||
products for w1 and w2. Defaults to False.
|
||||
- w1_scale (Optional[torch.Tensor]): Optional scale to be used for
|
||||
w1.
|
||||
- w2_scale (Optional[torch.Tensor]): Optional scale to be used for
|
||||
w2.
|
||||
|
||||
Returns:
|
||||
- torch.Tensor: The output tensor after applying the MoE layer.
|
||||
"""
|
||||
# Check constraints.
|
||||
):
|
||||
assert hidden_states.shape[0] == gating_output.shape[0], (
|
||||
"Number of tokens mismatch")
|
||||
assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch"
|
||||
assert gating_output.shape[1] == w1.shape[0], "Number of experts mismatch"
|
||||
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
|
||||
assert w1.is_contiguous(), "Expert weights1 must be contiguous"
|
||||
assert w2.is_contiguous(), "Expert weights2 must be contiguous"
|
||||
assert hidden_states.dtype in [
|
||||
torch.float32, torch.float16, torch.bfloat16
|
||||
]
|
||||
|
||||
M, _ = hidden_states.shape
|
||||
E, N, _ = w1.shape
|
||||
|
||||
if is_hip():
|
||||
# The MoE kernels are not yet supported on ROCm.
|
||||
@ -393,6 +349,33 @@ def fused_moe(
|
||||
del token_expert_indicies # Not used. Will be used in the future.
|
||||
if renormalize:
|
||||
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
|
||||
return topk_weights, topk_ids
|
||||
|
||||
|
||||
def fused_experts(hidden_states: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
inplace: bool = False,
|
||||
override_config: Optional[Dict[str, Any]] = None,
|
||||
use_fp8: bool = False,
|
||||
w1_scale: Optional[torch.Tensor] = None,
|
||||
w2_scale: Optional[torch.Tensor] = None,
|
||||
a1_scale: Optional[torch.Tensor] = None,
|
||||
a2_scale: Optional[torch.Tensor] = None):
|
||||
# Check constraints.
|
||||
assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch"
|
||||
assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
|
||||
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
|
||||
assert w1.is_contiguous(), "Expert weights1 must be contiguous"
|
||||
assert w2.is_contiguous(), "Expert weights2 must be contiguous"
|
||||
assert hidden_states.dtype in [
|
||||
torch.float32, torch.float16, torch.bfloat16
|
||||
]
|
||||
|
||||
M, _ = hidden_states.shape
|
||||
E, N, _ = w1.shape
|
||||
|
||||
if override_config:
|
||||
config = override_config
|
||||
@ -477,3 +460,63 @@ def fused_moe(
|
||||
out=hidden_states)
|
||||
return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape),
|
||||
dim=1)
|
||||
|
||||
|
||||
def fused_moe(
|
||||
hidden_states: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
gating_output: torch.Tensor,
|
||||
topk: int,
|
||||
renormalize: bool,
|
||||
inplace: bool = False,
|
||||
override_config: Optional[Dict[str, Any]] = None,
|
||||
use_fp8: bool = False,
|
||||
w1_scale: Optional[torch.Tensor] = None,
|
||||
w2_scale: Optional[torch.Tensor] = None,
|
||||
a1_scale: Optional[torch.Tensor] = None,
|
||||
a2_scale: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
This function computes a Mixture of Experts (MoE) layer using two sets of
|
||||
weights, w1 and w2, and top-k gating mechanism.
|
||||
|
||||
Parameters:
|
||||
- hidden_states (torch.Tensor): The input tensor to the MoE layer.
|
||||
- w1 (torch.Tensor): The first set of expert weights.
|
||||
- w2 (torch.Tensor): The second set of expert weights.
|
||||
- gating_output (torch.Tensor): The output of the gating operation
|
||||
(before softmax).
|
||||
- topk (int): The number of top-k experts to select.
|
||||
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
|
||||
- inplace (bool): If True, perform the operation in-place.
|
||||
Defaults to False.
|
||||
- override_config (Optional[Dict[str, Any]]): Optional override
|
||||
for the kernel configuration.
|
||||
- use_fp8 (bool): If True, use fp8 arithmetic to compute the inner
|
||||
products for w1 and w2. Defaults to False.
|
||||
- w1_scale (Optional[torch.Tensor]): Optional scale to be used for
|
||||
w1.
|
||||
- w2_scale (Optional[torch.Tensor]): Optional scale to be used for
|
||||
w2.
|
||||
|
||||
Returns:
|
||||
- torch.Tensor: The output tensor after applying the MoE layer.
|
||||
"""
|
||||
# Check constraints.
|
||||
assert gating_output.shape[1] == w1.shape[0], "Number of experts mismatch"
|
||||
|
||||
topk_weights, topk_ids = fused_topk(hidden_states, gating_output, topk,
|
||||
renormalize)
|
||||
return fused_experts(hidden_states,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
inplace=inplace,
|
||||
override_config=override_config,
|
||||
use_fp8=use_fp8,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale)
|
||||
|
@ -4,6 +4,8 @@ from vllm.model_executor.layers.quantization.aqlm import AQLMConfig
|
||||
from vllm.model_executor.layers.quantization.awq import AWQConfig
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
from vllm.model_executor.layers.quantization.deepspeedfp import (
|
||||
DeepSpeedFPConfig)
|
||||
from vllm.model_executor.layers.quantization.fp8 import Fp8Config
|
||||
from vllm.model_executor.layers.quantization.gptq import GPTQConfig
|
||||
from vllm.model_executor.layers.quantization.gptq_marlin import (
|
||||
@ -19,6 +21,7 @@ QUANTIZATION_METHODS: Dict[str, Type[QuantizationConfig]] = {
|
||||
"squeezellm": SqueezeLLMConfig,
|
||||
"gptq_marlin": GPTQMarlinConfig,
|
||||
"marlin": MarlinConfig,
|
||||
"deepspeedfp": DeepSpeedFPConfig
|
||||
}
|
||||
|
||||
|
||||
|
194
vllm/model_executor/layers/quantization/deepspeedfp.py
Normal file
194
vllm/model_executor/layers/quantization/deepspeedfp.py
Normal file
@ -0,0 +1,194 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
|
||||
|
||||
class DeepSpeedFPConfig(QuantizationConfig):
|
||||
"""Config for DeepSpeed FP quantizer. It supports fp6 and fp8.
|
||||
|
||||
Args:
|
||||
weight_bits: the target quantization bits, 6 or 8.
|
||||
group_size: group size for quantizaiton, default to 128.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
weight_bits: int = 8,
|
||||
group_size: int = 512,
|
||||
) -> None:
|
||||
self.weight_bits = weight_bits
|
||||
self.group_size = group_size
|
||||
self.valid_types = [torch.bfloat16, torch.float16]
|
||||
|
||||
if self.weight_bits not in (6, 8):
|
||||
raise ValueError(
|
||||
"Currently, only 6-bit or 8-bit weight quantization are "
|
||||
f"supported for DeepSpeed FP quantizaiton, but got "
|
||||
f"{self.weight_bits} bits.")
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (f"DeepSpeedFPConfig(weight_bits={self.weight_bits}), "
|
||||
f"group_size={self.group_size}")
|
||||
|
||||
@classmethod
|
||||
def get_name(cls) -> str:
|
||||
return "DeepSpeedFP"
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, config: Dict[str, Any]) -> "DeepSpeedFPConfig":
|
||||
weight_bits = cls.get_from_keys(config, ["bits"])
|
||||
group_size = cls.get_from_keys(config, ["group_size"])
|
||||
return cls(weight_bits=weight_bits, group_size=group_size)
|
||||
|
||||
def get_linear_method(self) -> "DeepSpeedFPLinearMethod":
|
||||
return DeepSpeedFPLinearMethod(self)
|
||||
|
||||
def get_scaled_act_names(self) -> List[str]:
|
||||
return []
|
||||
|
||||
@classmethod
|
||||
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
||||
return [torch.half, torch.bfloat16]
|
||||
|
||||
@classmethod
|
||||
# Need to figure it out
|
||||
def get_min_capability(cls) -> int:
|
||||
return 60
|
||||
|
||||
@staticmethod
|
||||
def get_config_filenames() -> List[str]:
|
||||
return [
|
||||
"quant_config.json",
|
||||
"quantize_config.json",
|
||||
]
|
||||
|
||||
def get_quant_method(
|
||||
self,
|
||||
layer: torch.nn.Module) -> Optional["DeepSpeedFPLinearMethod"]:
|
||||
if isinstance(layer, LinearBase):
|
||||
return DeepSpeedFPLinearMethod(self)
|
||||
return None
|
||||
|
||||
|
||||
class DeepSpeedFPLinearMethod(LinearMethodBase):
|
||||
"""Linear method for DeepSpeedFP quantizer.
|
||||
|
||||
Args:
|
||||
quant_config: the DeepSpeedFP quantization config.
|
||||
"""
|
||||
|
||||
def __init__(self, quant_config: DeepSpeedFPConfig):
|
||||
self.quant_config = quant_config
|
||||
self.weight = None
|
||||
|
||||
def create_weights(self,
|
||||
layer: torch.nn.Module,
|
||||
input_size_per_partition: int,
|
||||
output_partition_sizes: List[int],
|
||||
input_size: int,
|
||||
output_size: int,
|
||||
params_dtype: torch.dtype,
|
||||
weight_loader=None,
|
||||
**extra_weight_attrs):
|
||||
del output_size
|
||||
del input_size
|
||||
output_size_per_partition = sum(output_partition_sizes)
|
||||
weight = DeepSpeedFPParameter(
|
||||
torch.Size((output_size_per_partition, input_size_per_partition)),
|
||||
params_dtype=params_dtype,
|
||||
quant_config=self.quant_config,
|
||||
)
|
||||
set_weight_attrs(weight, {
|
||||
"input_dim": 1,
|
||||
"output_dim": 0,
|
||||
})
|
||||
layer.register_parameter("weight", weight)
|
||||
|
||||
def quant_weight_loader(param, loaded_weight, *args, **kwargs):
|
||||
# Calls the original weight loader (if any), quantizes the result,
|
||||
# and then loads the quantized parameter.
|
||||
if weight_loader is not None:
|
||||
orig_param_data = param.data
|
||||
param.data = param.ds_dequantize()
|
||||
weight_loader(param, loaded_weight, *args, **kwargs)
|
||||
param.data, loaded_weight = orig_param_data, param.data
|
||||
param.ds_quantize_(loaded_weight.cuda())
|
||||
|
||||
extra_weight_attrs["weight_loader"] = quant_weight_loader
|
||||
set_weight_attrs(weight, extra_weight_attrs)
|
||||
|
||||
def apply(self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
weight = layer.weight
|
||||
y = weight.ds_dequantize()
|
||||
return F.linear(x, y, bias)
|
||||
|
||||
|
||||
class DeepSpeedFPParameter(nn.Parameter):
|
||||
"""
|
||||
DeepSpeedFP quantized parameter class that implements fp8/fp6
|
||||
quantization deepspeed. Weights are stored in quantized form on
|
||||
GPUs, and can be dequantized on-the-fly when needed by the model.
|
||||
"""
|
||||
|
||||
def __new__(cls, orig_shape: torch.Size, params_dtype: torch.dtype,
|
||||
quant_config: DeepSpeedFPConfig):
|
||||
try:
|
||||
import deepspeed
|
||||
if deepspeed.__version__ < "0.14.2":
|
||||
raise ImportError("deepspeed version is wrong. Please "
|
||||
"install deepspeed>=0.14.2.")
|
||||
from deepspeed.ops.fp_quantizer import FP_Quantize
|
||||
except ImportError as err:
|
||||
raise ImportError("Please install deepspeed>=0.14.2 via "
|
||||
"`pip install deepspeed>=0.14.2` to use "
|
||||
"deepspeedfp quantizer.") from err
|
||||
data = torch.empty((
|
||||
orig_shape.numel() // quant_config.group_size,
|
||||
quant_config.group_size * quant_config.weight_bits // 8 + 4,
|
||||
),
|
||||
dtype=torch.int8)
|
||||
self = torch.Tensor._make_subclass(cls, data, data.requires_grad)
|
||||
self.orig_shape = orig_shape
|
||||
self.quant_config = quant_config
|
||||
self.fp_quantizer = FP_Quantize(group_size=quant_config.group_size)
|
||||
self.fp_quantizer.orig_shape = orig_shape
|
||||
self.fp_quantizer.orig_dtype = params_dtype
|
||||
return self
|
||||
|
||||
def ds_quantize_(self, tensor: torch.Tensor):
|
||||
assert tensor.device.type == "cuda" and tensor.dtype != torch.int8
|
||||
return self.data.copy_(
|
||||
self.fp_quantizer.quantize(
|
||||
tensor.data,
|
||||
q_bits=self.quant_config.weight_bits,
|
||||
))
|
||||
|
||||
def ds_dequantize(self, fp_out=None) -> torch.Tensor:
|
||||
"""
|
||||
Return a tensor containing the dequantized weights of this parameter.
|
||||
"""
|
||||
assert self.data.device.type == "cuda" and self.data.dtype == torch.int8
|
||||
return self.fp_quantizer.dequantize(
|
||||
self.data, fp_out=fp_out, q_bits=self.quant_config.weight_bits)
|
||||
|
||||
def ds_selective_dequantize(self, indices, fp_out=None) -> torch.Tensor:
|
||||
"""
|
||||
Return a tensor where only the weights at `indices` are dequantized
|
||||
(to save HBM -> SRAM bandwidth).
|
||||
"""
|
||||
assert self.data.device.type == "cuda" and self.data.dtype == torch.int8
|
||||
return self.fp_quantizer.selective_dequantize(
|
||||
self.data,
|
||||
indices,
|
||||
fp_out=fp_out,
|
||||
q_bits=self.quant_config.weight_bits)
|
@ -54,6 +54,7 @@ _MODELS = {
|
||||
"StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"),
|
||||
"StableLmForCausalLM": ("stablelm", "StablelmForCausalLM"),
|
||||
"Starcoder2ForCausalLM": ("starcoder2", "Starcoder2ForCausalLM"),
|
||||
"ArcticForCausalLM": ("arctic", "ArcticForCausalLM"),
|
||||
"XverseForCausalLM": ("xverse", "XverseForCausalLM"),
|
||||
}
|
||||
|
||||
|
521
vllm/model_executor/models/arctic.py
Normal file
521
vllm/model_executor/models/arctic.py
Normal file
@ -0,0 +1,521 @@
|
||||
"""Inference-only Snowflake Arctic model."""
|
||||
from typing import Iterable, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.distributed import (get_tensor_model_parallel_rank,
|
||||
get_tensor_model_parallel_world_size,
|
||||
tensor_model_parallel_all_reduce)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.fused_moe import fused_experts, fused_topk
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
from vllm.model_executor.layers.quantization.deepspeedfp import (
|
||||
DeepSpeedFPConfig, DeepSpeedFPParameter)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.sequence import SamplerOutput
|
||||
from vllm.transformers_utils.configs.arctic import ArcticConfig
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
class ArcticMLP(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: ArcticConfig,
|
||||
layer_id: int,
|
||||
expert_id: int = -1,
|
||||
is_residual_mlp: bool = False,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
reduce_results: bool = True):
|
||||
super(ArcticMLP, self).__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.expert_id = expert_id
|
||||
self.layer_id = layer_id
|
||||
|
||||
self.ffn_dim = config.intermediate_size if not is_residual_mlp \
|
||||
else self.hidden_size
|
||||
|
||||
self.w13 = MergedColumnParallelLinear(self.hidden_size,
|
||||
[self.ffn_dim] * 2,
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
self.w2 = RowParallelLinear(self.ffn_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
reduce_results=reduce_results,
|
||||
quant_config=quant_config)
|
||||
if config.hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {config.hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, hidden_states):
|
||||
gate_up, _ = self.w13(hidden_states)
|
||||
hidden_states = self.act_fn(gate_up)
|
||||
hidden_states, _ = self.w2(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class ArcticMoE(nn.Module):
|
||||
"""
|
||||
Model-parallel implementation of Arctic MoE Layer.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
config: ArcticConfig,
|
||||
layer_id: int,
|
||||
tp_size: Optional[int] = None,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
reduce_results: bool = True):
|
||||
super(ArcticMoE, self).__init__()
|
||||
|
||||
self.tp_size = tp_size or get_tensor_model_parallel_world_size()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.num_experts = config.num_local_experts
|
||||
self.layer_id = layer_id
|
||||
self.top_k = config.num_experts_per_tok
|
||||
self.intermediate_size = config.intermediate_size // self.tp_size
|
||||
|
||||
self.is_moe_layer = (layer_id + 1) % config.moe_layer_frequency == 0
|
||||
self.is_quant = isinstance(quant_config, DeepSpeedFPConfig)
|
||||
self.reduce_results = reduce_results
|
||||
# Some other parameters
|
||||
if params_dtype is None:
|
||||
params_dtype = torch.get_default_dtype()
|
||||
self.params_dtype = params_dtype
|
||||
|
||||
if not self.is_moe_layer:
|
||||
self.mlp = ArcticMLP(config,
|
||||
layer_id=layer_id,
|
||||
quant_config=quant_config,
|
||||
reduce_results=reduce_results)
|
||||
else:
|
||||
self.gate = ReplicatedLinear(self.hidden_size,
|
||||
self.num_experts,
|
||||
bias=False,
|
||||
params_dtype=self.params_dtype,
|
||||
quant_config=quant_config)
|
||||
if self.is_quant:
|
||||
self.ws = DeepSpeedFPParameter(
|
||||
torch.Size((self.num_experts, 2 * self.intermediate_size,
|
||||
self.hidden_size)),
|
||||
params_dtype=params_dtype,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
self.w2s = DeepSpeedFPParameter(
|
||||
torch.Size((self.num_experts, self.hidden_size,
|
||||
self.intermediate_size)),
|
||||
params_dtype=params_dtype,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
else:
|
||||
self.ws = nn.Parameter(
|
||||
torch.empty(self.num_experts,
|
||||
2 * self.intermediate_size,
|
||||
self.hidden_size,
|
||||
device="cuda",
|
||||
dtype=self.params_dtype))
|
||||
self.w2s = nn.Parameter(
|
||||
torch.empty(self.num_experts,
|
||||
self.hidden_size,
|
||||
self.intermediate_size,
|
||||
device="cuda",
|
||||
dtype=self.params_dtype))
|
||||
set_weight_attrs(self.ws, {
|
||||
"weight_loader": self.weight_loader,
|
||||
})
|
||||
set_weight_attrs(self.w2s, {
|
||||
"weight_loader": self.weight_loader,
|
||||
})
|
||||
|
||||
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
|
||||
weight_name: str, expert_id: int):
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
param_data = param.ds_dequantize() if self.is_quant else param.data
|
||||
shard_size = self.intermediate_size
|
||||
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
|
||||
if weight_name.endswith("w1.weight"):
|
||||
param_data[expert_id, 0:shard_size, :] = loaded_weight[shard, :]
|
||||
if weight_name.endswith("w3.weight"):
|
||||
param_data[expert_id,
|
||||
shard_size:2 * shard_size, :] = loaded_weight[shard, :]
|
||||
if weight_name.endswith("w2.weight"):
|
||||
param_data[expert_id, :, :] = loaded_weight[:, shard]
|
||||
if self.is_quant:
|
||||
param.ds_quantize_(param_data)
|
||||
|
||||
def local_moe_fused(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
num_tokens, hidden_size = hidden_states.shape
|
||||
hidden_states = hidden_states.view(-1, self.hidden_size)
|
||||
# router_logits: (num_tokens, n_experts)
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
do_normalize = self.top_k > 1
|
||||
topk_weights, topk_ids = fused_topk(hidden_states,
|
||||
router_logits,
|
||||
self.top_k,
|
||||
renormalize=do_normalize)
|
||||
# topk_ids: (num_tokens, k)
|
||||
if self.is_quant:
|
||||
if 2 * num_tokens <= self.num_experts:
|
||||
# If much fewer tokens than experts, use selective dequantize.
|
||||
ws_dequantized = self.ws.ds_selective_dequantize(
|
||||
topk_ids.flatten())
|
||||
w2s_dequantized = self.w2s.ds_selective_dequantize(
|
||||
topk_ids.flatten())
|
||||
# We gathered the experts to the tokens so update the mapping.
|
||||
topk_ids = torch.arange(
|
||||
0,
|
||||
topk_ids.numel(),
|
||||
device=topk_ids.device,
|
||||
).reshape(topk_ids.shape)
|
||||
else:
|
||||
ws_dequantized = self.ws.ds_dequantize()
|
||||
w2s_dequantized = self.w2s.ds_dequantize()
|
||||
|
||||
final_hidden_states = fused_experts(
|
||||
hidden_states,
|
||||
ws_dequantized if self.is_quant else self.ws,
|
||||
w2s_dequantized if self.is_quant else self.w2s,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
inplace=True)
|
||||
if self.reduce_results and self.tp_size > 1:
|
||||
final_hidden_states = tensor_model_parallel_all_reduce(
|
||||
final_hidden_states)
|
||||
return final_hidden_states.view(num_tokens, hidden_size)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor):
|
||||
if self.is_moe_layer:
|
||||
final_hidden_states = self.local_moe_fused(hidden_states)
|
||||
else:
|
||||
final_hidden_states = self.mlp(hidden_states)
|
||||
return final_hidden_states
|
||||
|
||||
|
||||
class ArcticAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ArcticConfig,
|
||||
layer_idx: Optional[int] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer_idx = layer_idx
|
||||
self.hidden_size = config.hidden_size
|
||||
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = config.num_attention_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = config.num_key_value_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.head_dim = self.hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
self.rope_theta = config.rope_theta
|
||||
self.scaling = self.head_dim**-0.5
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(self.hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=False,
|
||||
quant_config=quant_config)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
reduce_results=True,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=self.max_position_embeddings,
|
||||
base=int(self.rope_theta),
|
||||
is_neox_style=True,
|
||||
)
|
||||
|
||||
self.attn = Attention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class ArcticDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ArcticConfig,
|
||||
layer_idx: int,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.layer_idx = layer_idx
|
||||
self.hidden_size = config.hidden_size
|
||||
is_moe_layer = (layer_idx + 1) % config.moe_layer_frequency == 0
|
||||
self.use_residual = config.use_residual and is_moe_layer
|
||||
self.self_attn = ArcticAttention(config,
|
||||
layer_idx,
|
||||
quant_config=quant_config)
|
||||
self.block_sparse_moe = ArcticMoE(
|
||||
config,
|
||||
layer_id=layer_idx,
|
||||
quant_config=quant_config,
|
||||
reduce_results=(not self.use_residual))
|
||||
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
if self.use_residual:
|
||||
self.residual_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.residual_mlp = ArcticMLP(config,
|
||||
layer_id=layer_idx,
|
||||
is_residual_mlp=True,
|
||||
reduce_results=False)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
residual_input = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
)
|
||||
hidden_states = residual_input + hidden_states
|
||||
|
||||
residual_attn = hidden_states
|
||||
if self.use_residual:
|
||||
hidden_states = self.residual_layernorm(hidden_states)
|
||||
hidden_states = self.residual_mlp(hidden_states)
|
||||
residual_mlp = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(residual_input)
|
||||
hidden_states = self.block_sparse_moe(hidden_states)
|
||||
hidden_states = residual_mlp + hidden_states
|
||||
hidden_states = tensor_model_parallel_all_reduce(hidden_states)
|
||||
hidden_states = residual_attn + hidden_states
|
||||
else:
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.block_sparse_moe(hidden_states)
|
||||
hidden_states = residual_attn + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class ArcticModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ArcticConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
self.vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=self.vocab_size)
|
||||
self.layers = nn.ModuleList([
|
||||
ArcticDecoderLayer(config, layer_idx, quant_config=quant_config)
|
||||
for layer_idx in range(config.num_hidden_layers)
|
||||
])
|
||||
self._attn_implementation = config._attn_implementation
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states = layer(positions, hidden_states, kv_caches[i],
|
||||
attn_metadata)
|
||||
hidden_states = self.norm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class ArcticForCausalLM(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: ArcticConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
**kwargs) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.model = ArcticModel(config, quant_config)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = ParallelLMHead(
|
||||
self.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.num_experts = config.num_local_experts
|
||||
self.num_experts_per_tok = config.num_experts_per_tok
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
||||
config.vocab_size)
|
||||
self.sampler = Sampler()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[torch.Tensor],
|
||||
attn_metadata: AttentionMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
attn_metadata)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(self, hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||
logits = self.logits_processor(self.lm_head.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: Optional[torch.Tensor],
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
]
|
||||
|
||||
mlp_params_mapping = []
|
||||
expert_params_mapping = []
|
||||
num_layers = self.config.num_hidden_layers
|
||||
|
||||
for layer in range(num_layers):
|
||||
mlp_params_mapping.append(
|
||||
(f"layers.{layer}.residual_mlp.w13.weight",
|
||||
f"layers.{layer}.residual_mlp.w1.weight", 0))
|
||||
mlp_params_mapping.append(
|
||||
(f"layers.{layer}.residual_mlp.w13.weight",
|
||||
f"layers.{layer}.residual_mlp.w3.weight", 1))
|
||||
if layer % 2 == 0:
|
||||
# MLP layers
|
||||
mlp_params_mapping.append(
|
||||
(f"layers.{layer}.block_sparse_moe.mlp.w13.weight",
|
||||
f"layers.{layer}.block_sparse_moe.mlp.w1.weight", 0))
|
||||
mlp_params_mapping.append(
|
||||
(f"layers.{layer}.block_sparse_moe.mlp.w13.weight",
|
||||
f"layers.{layer}.block_sparse_moe.mlp.w3.weight", 1))
|
||||
else:
|
||||
# MoE layers
|
||||
for expert_id in range(self.config.num_local_experts):
|
||||
expert_params_mapping.append(
|
||||
("ws", f"experts.{expert_id}.w1.weight", expert_id))
|
||||
expert_params_mapping.append(
|
||||
("w2s", f"experts.{expert_id}.w2.weight", expert_id))
|
||||
expert_params_mapping.append(
|
||||
("ws", f"experts.{expert_id}.w3.weight", expert_id))
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
|
||||
logger.info(
|
||||
"It will take ~10 minutes loading from the 16-bit weights. "
|
||||
"Alternatively, use the prequantized 8-bit weights of arctic "
|
||||
"and set load-format to `sharded_state` will accelerate loading.")
|
||||
for name, loaded_weight in weights:
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
for param_name, weight_name, shard_id in mlp_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
for param_name, weight_name, shard_id \
|
||||
in expert_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param,
|
||||
loaded_weight,
|
||||
weight_name,
|
||||
expert_id=shard_id)
|
||||
break
|
||||
else:
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
204
vllm/transformers_utils/configs/arctic.py
Normal file
204
vllm/transformers_utils/configs/arctic.py
Normal file
@ -0,0 +1,204 @@
|
||||
# yapf: disable
|
||||
# ruff: noqa: E501
|
||||
# coding=utf-8
|
||||
# Copied from
|
||||
# https://huggingface.co/Snowflake/snowflake-arctic-instruct/blob/main/configuration_arctic.py
|
||||
""" Arctic model configuration"""
|
||||
|
||||
from dataclasses import asdict, dataclass
|
||||
from typing import Any, Dict
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
ARCTIC_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"arctic": "https://huggingface.co/Snowflake/snowflake-arctic-instruct/tree/main/config.json",
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class ArcticLoraConfig:
|
||||
lora_r: int = 64
|
||||
lora_alpha: float = 16
|
||||
shard_base_weights: bool = False
|
||||
|
||||
|
||||
@dataclass
|
||||
class ArcticQuantizationConfig:
|
||||
q_bits: int = 8
|
||||
rounding: str = "nearest"
|
||||
mantissa_bits: int = 3
|
||||
group_size: int = 128
|
||||
|
||||
|
||||
class ArcticConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`ArcticModel`]. It is used to instantiate an
|
||||
Arctic model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||||
with the defaults will yield a similar configuration to that of the #TODO(rsamdani): add what model has the default config..
|
||||
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 32000):
|
||||
Vocabulary size of the Arctic model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`ArcticModel`]
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 14336):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
num_key_value_heads (`int`, *optional*, defaults to 8):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
||||
The maximum sequence length that this model might ever be used with. Arctic's sliding window attention
|
||||
allows sequence of up to 4096*32 tokens.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
pad_token_id (`int`, *optional*):
|
||||
The id of the padding token.
|
||||
bos_token_id (`int`, *optional*, defaults to 1):
|
||||
The id of the "beginning-of-sequence" token.
|
||||
eos_token_id (`int`, *optional*, defaults to 2):
|
||||
The id of the "end-of-sequence" token.
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether the model's input and output word embeddings should be tied.
|
||||
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
sliding_window (`int`, *optional*):
|
||||
Sliding window attention window size. If not specified, will default to `4096`.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
||||
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
||||
parameter
|
||||
num_local_experts (`int`, *optional*, defaults to 8):
|
||||
Number of experts per Sparse MLP layer.
|
||||
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
||||
The aux loss factor for the total loss.
|
||||
|
||||
```python
|
||||
>>> from transformers import ArcticModel, ArcticConfig
|
||||
|
||||
>>> # Initializing a Arctic 7B style configuration TODO(rsamdani): verify which model does the default configuration correspond to.
|
||||
>>> configuration = ArcticConfig()
|
||||
|
||||
>>> # Initializing a model from the Arctic 7B style configuration
|
||||
>>> model = ArcticModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "arctic"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=32000,
|
||||
hidden_size=4096,
|
||||
intermediate_size=14336,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=4096,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-5,
|
||||
use_cache=True,
|
||||
pad_token_id=None,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=1e6,
|
||||
sliding_window=None,
|
||||
attention_dropout=0.0,
|
||||
num_experts_per_tok=1,
|
||||
num_local_experts=8,
|
||||
router_aux_loss_coef=0.001,
|
||||
moe_layer_frequency=2,
|
||||
parallel_attn_mlp_res=False,
|
||||
moe_train_capacity_factor=1,
|
||||
moe_eval_capacity_factor=1,
|
||||
enable_expert_tensor_parallelism=False,
|
||||
moe_min_capacity=0,
|
||||
moe_token_dropping=True,
|
||||
quantization=None,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.sliding_window = sliding_window
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.attention_dropout = attention_dropout
|
||||
|
||||
self.num_experts_per_tok = num_experts_per_tok
|
||||
self.num_local_experts = num_local_experts
|
||||
self.router_aux_loss_coef = router_aux_loss_coef
|
||||
self.moe_layer_frequency = moe_layer_frequency
|
||||
self.moe_train_capacity_factor = moe_train_capacity_factor
|
||||
self.moe_eval_capacity_factor = moe_eval_capacity_factor
|
||||
self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism
|
||||
self.moe_min_capacity = moe_min_capacity
|
||||
self.moe_token_dropping = moe_token_dropping
|
||||
self.parallel_attn_mlp_res = parallel_attn_mlp_res
|
||||
if isinstance(quantization, dict):
|
||||
self.quantization = ArcticQuantizationConfig(**quantization)
|
||||
else:
|
||||
self.quantization = quantization
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "ArcticConfig":
|
||||
result = super().from_dict(config_dict, **kwargs)
|
||||
config = result[0] if isinstance(result, tuple) else result
|
||||
if isinstance(config.quantization, dict):
|
||||
config.quantization = ArcticQuantizationConfig(**config.quantization)
|
||||
return result
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
ret = super().to_dict()
|
||||
if isinstance(ret["quantization"], ArcticQuantizationConfig):
|
||||
ret["quantization"] = asdict(ret["quantization"])
|
||||
return ret
|
Loading…
x
Reference in New Issue
Block a user