[torch.compile] store inductor compiled Python file (#12182)
Signed-off-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
parent
630eb5b5ce
commit
e66faf4809
@ -25,23 +25,30 @@ from .pass_manager import PostGradPassManager
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class InductorArtifact:
|
||||
hash_str: str = ""
|
||||
file_path: str = ""
|
||||
|
||||
|
||||
class InductorHashCache:
|
||||
"""
|
||||
Disk format: a Python list of tuples, each tuple is
|
||||
(runtime_shape, graph_index, hash_str)
|
||||
(runtime_shape, graph_index, hash_str, file_path)
|
||||
We use list of tuple for readability.
|
||||
|
||||
In-memory format: a defaultdict of dict, where the key is
|
||||
runtime_shape, and the value is a dict of graph_index to hash_str.
|
||||
|
||||
The data is essentially `Dict[Optional[int], Dict[int, str]]`,
|
||||
The data is essentially `Dict[Optional[int], Dict[int, InductorArtifact]]`,
|
||||
we don't use json here because json doesn't support int as key.
|
||||
|
||||
TODO: better off-the-shelf solution to serialize the data?
|
||||
"""
|
||||
|
||||
def __init__(self, cache_dir: str, disabled: bool = False):
|
||||
self.cache: defaultdict = defaultdict(dict)
|
||||
self.cache: Dict[Optional[int],
|
||||
Dict[int, InductorArtifact]] = defaultdict(dict)
|
||||
self.disabled = disabled
|
||||
self.cache_dir = cache_dir
|
||||
self.cache_file_path = os.path.join(cache_dir,
|
||||
@ -66,14 +73,25 @@ class InductorHashCache:
|
||||
# because it is a safe way to parse Python literals.
|
||||
# do not use eval(), it is unsafe.
|
||||
list_data = ast.literal_eval(data)
|
||||
for runtime_shape, graph_index, hash_str in list_data:
|
||||
self.cache[runtime_shape][graph_index] = hash_str
|
||||
for item in list_data:
|
||||
runtime_shape = item[0]
|
||||
graph_index = item[1]
|
||||
hash_str = item[2]
|
||||
# for compatibility of old version,
|
||||
# where we don't have file_path.
|
||||
# NOTE: after running the new code, the file_path
|
||||
# will be updated.
|
||||
file_path = "" if len(item) == 3 else item[3]
|
||||
self.cache[runtime_shape][graph_index] = InductorArtifact(
|
||||
hash_str=hash_str, file_path=file_path)
|
||||
|
||||
def serialize(self) -> str:
|
||||
data = []
|
||||
for runtime_shape, graph_index_to_hash_str in self.cache.items():
|
||||
for graph_index, hash_str in graph_index_to_hash_str.items():
|
||||
data.append((runtime_shape, graph_index, hash_str))
|
||||
for runtime_shape, value in self.cache.items():
|
||||
for graph_index, inductor_artifact in value.items():
|
||||
data.append(
|
||||
(runtime_shape, graph_index, inductor_artifact.hash_str,
|
||||
inductor_artifact.file_path))
|
||||
printer = pprint.PrettyPrinter(indent=4)
|
||||
return printer.pformat(data)
|
||||
|
||||
@ -90,13 +108,14 @@ class InductorHashCache:
|
||||
return runtime_shape in self.cache and graph_index in self.cache[
|
||||
runtime_shape]
|
||||
|
||||
def __getitem__(self, key: Tuple[Optional[int], int]) -> str:
|
||||
def __getitem__(self, key: Tuple[Optional[int], int]) -> InductorArtifact:
|
||||
if self.disabled:
|
||||
raise KeyError("cannot read from disabled cache")
|
||||
runtime_shape, graph_index = key
|
||||
return self.cache[runtime_shape][graph_index]
|
||||
|
||||
def __setitem__(self, key: Tuple[Optional[int], int], value: str):
|
||||
def __setitem__(self, key: Tuple[Optional[int], int],
|
||||
value: InductorArtifact):
|
||||
# setitem for disabled cache is fine, because we
|
||||
# don't actually write to the disk
|
||||
runtime_shape, graph_index = key
|
||||
@ -181,7 +200,8 @@ def wrap_inductor(graph: fx.GraphModule,
|
||||
if (runtime_shape, graph_index) in cache_data:
|
||||
# we compiled this graph before
|
||||
# so we can directly lookup the compiled graph via hash
|
||||
hash_str = cache_data[(runtime_shape, graph_index)]
|
||||
inductor_artifact = cache_data[(runtime_shape, graph_index)]
|
||||
hash_str = inductor_artifact.hash_str
|
||||
if graph_index == 0:
|
||||
# adds some info logging for the first graph
|
||||
logger.info(
|
||||
@ -199,6 +219,7 @@ def wrap_inductor(graph: fx.GraphModule,
|
||||
"Inductor cache lookup failed. Please remove"
|
||||
f"the cache file {cache_data.cache_file_path} and try again." # noqa
|
||||
)
|
||||
inductor_artifact.file_path = inductor_compiled_graph.current_callable.__code__.co_filename # noqa
|
||||
|
||||
# Inductor calling convention (function signature):
|
||||
# f(list) -> tuple
|
||||
@ -224,19 +245,20 @@ def wrap_inductor(graph: fx.GraphModule,
|
||||
# the assumption is that we don't have nested Inductor compilation.
|
||||
# compiled_fx_graph_hash will only be called once, and we can hook
|
||||
# it to get the hash of the compiled graph directly.
|
||||
from torch._inductor.codecache import compiled_fx_graph_hash
|
||||
|
||||
inductor_artifact = InductorArtifact()
|
||||
from torch._inductor.codecache import (FxGraphCache,
|
||||
compiled_fx_graph_hash)
|
||||
original_load = FxGraphCache.load
|
||||
|
||||
def hijack_load(*args, **kwargs):
|
||||
inductor_compiled_graph = original_load(*args, **kwargs)
|
||||
inductor_artifact.file_path = inductor_compiled_graph.current_callable.__code__.co_filename # noqa
|
||||
return inductor_compiled_graph
|
||||
|
||||
def hijack_compiled_fx_graph_hash(*args, **kwargs):
|
||||
out = compiled_fx_graph_hash(*args, **kwargs)
|
||||
# store the hash in the cache
|
||||
nonlocal cache_data
|
||||
cache_data[(runtime_shape, graph_index)] = out[0]
|
||||
if graph_index == 0:
|
||||
# adds some info logging for the first graph
|
||||
logger.info("Cache the graph of shape %s for later use",
|
||||
str(runtime_shape))
|
||||
logger.debug("store the %s-th graph for shape %s via hash %s",
|
||||
graph_index, str(runtime_shape), out[0])
|
||||
inductor_artifact.hash_str = out[0]
|
||||
return out
|
||||
|
||||
def _check_can_cache(*args, **kwargs):
|
||||
@ -255,6 +277,11 @@ def wrap_inductor(graph: fx.GraphModule,
|
||||
if not cache_data.disabled:
|
||||
# compilation cache is enabled, patch several functions
|
||||
|
||||
# hijack to get the compiled graph itself
|
||||
stack.enter_context(
|
||||
patch("torch._inductor.codecache.FxGraphCache.load",
|
||||
hijack_load))
|
||||
|
||||
# for hijacking the hash of the compiled graph
|
||||
stack.enter_context(
|
||||
patch("torch._inductor.codecache.compiled_fx_graph_hash",
|
||||
@ -275,7 +302,16 @@ def wrap_inductor(graph: fx.GraphModule,
|
||||
compiled_graph = compile_fx(graph,
|
||||
example_inputs,
|
||||
config_patches=current_config)
|
||||
|
||||
# store the inductor_artifact in the cache
|
||||
cache_data[(runtime_shape, graph_index)] = inductor_artifact
|
||||
if graph_index == 0:
|
||||
# adds some info logging for the first graph
|
||||
logger.info("Cache the graph of shape %s for later use",
|
||||
str(runtime_shape))
|
||||
logger.debug(
|
||||
"store the %s-th graph for shape %s via hash %s from file %s",
|
||||
graph_index, str(runtime_shape), inductor_artifact.hash_str,
|
||||
inductor_artifact.file_path)
|
||||
# after compiling the last graph, record the end time
|
||||
if graph_index == num_graphs - 1:
|
||||
now = time.time()
|
||||
|
@ -2862,17 +2862,8 @@ class CompilationConfig(BaseModel):
|
||||
"vllm.unified_attention_with_output",
|
||||
]
|
||||
else:
|
||||
# v0 can use full graph compilation without splitting,
|
||||
# splitting is optional.
|
||||
# right now we still need it. kv cache shape
|
||||
# will be included in the graph if we don't split
|
||||
# the graph.
|
||||
# TODO: hide kv cache in static forward context
|
||||
# so that inductor does not see it.
|
||||
self.splitting_ops = [
|
||||
"vllm.unified_attention",
|
||||
"vllm.unified_attention_with_output",
|
||||
]
|
||||
# v0 uses full graph compilation
|
||||
self.splitting_ops = []
|
||||
|
||||
for k, v in self.inductor_passes.items():
|
||||
if not isinstance(v, str):
|
||||
|
Loading…
x
Reference in New Issue
Block a user