[Misc] Add offline test for disaggregated prefill (#12418)
This commit is contained in:
parent
91dd8f7aa6
commit
e31498bdcb
111
examples/offline_inference/disaggregated_prefill.py
Normal file
111
examples/offline_inference/disaggregated_prefill.py
Normal file
@ -0,0 +1,111 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
"""
|
||||
This file demonstrates the example usage of disaggregated prefilling
|
||||
We will launch 2 vllm instances (GPU 0 for prefill and GPU 1 for decode),
|
||||
and then transfer the KV cache between them.
|
||||
"""
|
||||
import os
|
||||
import time
|
||||
from multiprocessing import Event, Process
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.config import KVTransferConfig
|
||||
|
||||
|
||||
def run_prefill(prefill_done):
|
||||
# We use GPU 0 for prefill node.
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
|
||||
# The prefill node receives two requests, while the decode node receives
|
||||
# three requests. So the decode node will only receive the KV Cache for
|
||||
# requests 1 and 3. The decode node will use the KV Cache of requests 1
|
||||
# and 3 and do prefilling on request 2.
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
# "Hi, your name is",
|
||||
# The decode node will actually "prefill" this request.
|
||||
"Tell me a very long story",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=1)
|
||||
|
||||
# Using PyNcclConnector to transmit KV caches between vLLM instances.
|
||||
# This instance is the prefill node (kv_producer, rank 0).
|
||||
# The number of parallel instances for KV cache transfer is set to 2,
|
||||
# as required for PyNcclConnector.
|
||||
ktc = KVTransferConfig.from_cli(
|
||||
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2}'
|
||||
)
|
||||
|
||||
# Set GPU memory utilization to 0.8 for an A6000 GPU with 40GB
|
||||
# memory. You may need to adjust the value to fit your GPU.
|
||||
llm = LLM(model="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
kv_transfer_config=ktc,
|
||||
max_model_len=2000,
|
||||
gpu_memory_utilization=0.8)
|
||||
|
||||
llm.generate(prompts, sampling_params)
|
||||
print("Prefill node is finished.")
|
||||
prefill_done.set()
|
||||
|
||||
# To keep the prefill node running in case the decode node is not done;
|
||||
# otherwise, the script might exit prematurely, causing incomplete decoding.
|
||||
try:
|
||||
while True:
|
||||
time.sleep(1)
|
||||
except KeyboardInterrupt:
|
||||
print("Script stopped by user.")
|
||||
|
||||
|
||||
def run_decode(prefill_done):
|
||||
# We use GPU 1 for decode node.
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"Hi, your name is",
|
||||
"Tell me a very long story",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0, top_p=0.95)
|
||||
|
||||
# Using PyNcclConnector to transmit KV caches between vLLM instances.
|
||||
# This instance is the decode node (kv_consumer, rank 1).
|
||||
# The number of parallel instances for KV cache transfer is set to 2,
|
||||
# as required for PyNcclConnector.
|
||||
ktc = KVTransferConfig.from_cli(
|
||||
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2}'
|
||||
)
|
||||
|
||||
# Set GPU memory utilization to 0.8 for an A6000 GPU with 40GB
|
||||
# memory. You may need to adjust the value to fit your GPU.
|
||||
llm = LLM(model="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||
kv_transfer_config=ktc,
|
||||
max_model_len=2000,
|
||||
gpu_memory_utilization=0.8)
|
||||
|
||||
# Wait for the producer to start the pipe
|
||||
print("Waiting for prefill node to finish...")
|
||||
prefill_done.wait()
|
||||
|
||||
# At this point when the prefill_done is set, the kv-cache should have been
|
||||
# transferred to this decode node, so we can start decoding.
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
prefill_done = Event()
|
||||
prefill_process = Process(target=run_prefill, args=(prefill_done, ))
|
||||
decode_process = Process(target=run_decode, args=(prefill_done, ))
|
||||
|
||||
# Start prefill node
|
||||
prefill_process.start()
|
||||
|
||||
# Start decode node
|
||||
decode_process.start()
|
||||
|
||||
# Terminate the prefill node when decode is finished
|
||||
decode_process.join()
|
||||
prefill_process.terminate()
|
Loading…
x
Reference in New Issue
Block a user