[Kernel] Add Exllama as a backend for compressed-tensors (#9395)
This commit is contained in:
parent
dbfa8d31d5
commit
e312e52b44
@ -66,6 +66,7 @@ if TYPE_CHECKING:
|
||||
VLLM_SKIP_P2P_CHECK: bool = False
|
||||
VLLM_ALLOW_DEPRECATED_BLOCK_MANAGER_V1: bool = False
|
||||
VLLM_TORCH_COMPILE_LEVEL: int = 0
|
||||
VLLM_DISABLED_KERNELS: List[str] = []
|
||||
|
||||
|
||||
def get_default_cache_root():
|
||||
@ -430,6 +431,14 @@ environment_variables: Dict[str, Callable[[], Any]] = {
|
||||
"VLLM_ALLOW_DEPRECATED_BLOCK_MANAGER_V1":
|
||||
lambda: os.environ.get("VLLM_ALLOW_DEPRECATED_BLOCK_MANAGER_V1", "0"
|
||||
) == "1",
|
||||
|
||||
# List of quantization kernels that should be disabled, used for testing
|
||||
# and performance comparisons. Currently only affects MPLinearKernel
|
||||
# selection
|
||||
# (kernels: MacheteLinearKernel, MarlinLinearKernel, ExllamaLinearKernel)
|
||||
"VLLM_DISABLED_KERNELS":
|
||||
lambda: [] if "VLLM_DISABLED_KERNELS" not in os.environ else os.environ[
|
||||
"VLLM_DISABLED_KERNELS"].split(","),
|
||||
}
|
||||
|
||||
# end-env-vars-definition
|
||||
|
@ -42,6 +42,10 @@ class MPLinearKernel(ABC):
|
||||
self.config = c
|
||||
self.w_q_name = w_q_param_name
|
||||
self.w_s_name = w_s_param_name
|
||||
if c.zero_points:
|
||||
assert w_zp_param_name is not None
|
||||
if c.has_g_idx:
|
||||
assert w_gidx_param_name is not None
|
||||
self.w_zp_name = w_zp_param_name
|
||||
self.w_gidx_name = w_gidx_param_name
|
||||
|
||||
|
@ -1,6 +1,8 @@
|
||||
import os
|
||||
from typing import List, Optional, Type
|
||||
|
||||
import vllm.envs as envs
|
||||
from vllm.model_executor.layers.quantization.kernels.exllama import (
|
||||
ExllamaLinearKernel)
|
||||
from vllm.model_executor.layers.quantization.kernels.machete import (
|
||||
MacheteLinearKernel)
|
||||
from vllm.model_executor.layers.quantization.kernels.marlin import (
|
||||
@ -13,6 +15,7 @@ from vllm.platforms import current_platform
|
||||
_POSSIBLE_KERNELS: List[Type[MPLinearKernel]] = [
|
||||
MacheteLinearKernel,
|
||||
MarlinLinearKernel,
|
||||
ExllamaLinearKernel,
|
||||
]
|
||||
|
||||
|
||||
@ -45,8 +48,7 @@ def choose_mp_linear_kernel(
|
||||
|
||||
failure_reasons = []
|
||||
for kernel in _POSSIBLE_KERNELS:
|
||||
if kernel.__name__ in os.environ.get("VLLM_DISABLED_KERNELS", "")\
|
||||
.split(","):
|
||||
if kernel.__name__ in envs.VLLM_DISABLED_KERNELS:
|
||||
failure_reasons.append(
|
||||
f' {kernel.__name__} disabled by environment variable')
|
||||
continue
|
||||
|
140
vllm/model_executor/layers/quantization/kernels/exllama.py
Normal file
140
vllm/model_executor/layers/quantization/kernels/exllama.py
Normal file
@ -0,0 +1,140 @@
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
||||
pack_quantized_values_into_int32)
|
||||
from vllm.model_executor.parameter import (BasevLLMParameter,
|
||||
permute_param_layout_)
|
||||
from vllm.scalar_type import scalar_types
|
||||
|
||||
from .MPLinearKernel import MPLinearKernel, MPLinearLayerConfig
|
||||
|
||||
|
||||
class ExllamaLinearKernel(MPLinearKernel):
|
||||
SUPPORTED_QUANT_TYPES = [scalar_types.uint4b8, scalar_types.uint8b128]
|
||||
# In theory supports `scalar_types.uint2b2, scalar_types.uint3b4` too but
|
||||
# currently untested so not added to the list
|
||||
|
||||
@classmethod
|
||||
def get_min_capability(cls) -> int:
|
||||
return 60
|
||||
|
||||
@classmethod
|
||||
def can_implement(cls,
|
||||
c: MPLinearLayerConfig) -> Tuple[bool, Optional[str]]:
|
||||
if c.has_g_idx and\
|
||||
c.partition_weight_shape[0] != c.full_weight_shape[0]:
|
||||
return False, "Act reordering currently not supported by Exllama, "\
|
||||
"when the input features are partitioned across "\
|
||||
"devices"
|
||||
|
||||
if c.partition_weight_shape[1] % (32 // c.weight_type.size_bits) != 0:
|
||||
return False, "Output features must be a multiple of the pack " \
|
||||
"factor (32 / num_bits) so that we can correctly " \
|
||||
"pack the zero points"
|
||||
|
||||
if c.act_type != torch.float16:
|
||||
return False, "Exllama only supports float16 activations"
|
||||
|
||||
if c.weight_type not in cls.SUPPORTED_QUANT_TYPES:
|
||||
return False, f"Quant type ({c.weight_type}) not supported by "\
|
||||
"Exllama, supported types are: "\
|
||||
f"{cls.SUPPORTED_QUANT_TYPES}"
|
||||
|
||||
if c.full_weight_shape[0] % c.group_size != 0:
|
||||
return False, f"Group size ({c.group_size}) does not evenly divide"\
|
||||
" the number of input features "\
|
||||
f"({c.full_weight_shape[0]})"
|
||||
|
||||
return True, None
|
||||
|
||||
def process_weights_after_loading(self, layer: torch.nn.Module):
|
||||
c = self.config
|
||||
|
||||
# For Exllama, we need to set a zero-point tensor if there is not one
|
||||
if not c.zero_points:
|
||||
self.w_zp_name = "qzeros"
|
||||
device = getattr(layer, self.w_q_name).device
|
||||
groups = c.partition_weight_shape[0] // c.group_size
|
||||
out_features = c.partition_weight_shape[1]
|
||||
|
||||
if c.weight_type.has_bias():
|
||||
# if the type has a bias we have to create a zeros tensor that
|
||||
# contains the bias values repeated for each group (-1 due to
|
||||
# a bug in the original GPTQ checkpoint format leading to
|
||||
# exllama kernel adding 1 to the zero points during inference)
|
||||
# Documentation of the bug can be found here:
|
||||
# https://garden.danieldk.eu/GPTQ-Checkpoint-Format
|
||||
zeros = torch.full((groups, out_features),
|
||||
c.weight_type.bias - 1,
|
||||
dtype=torch.int32,
|
||||
device=device)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"A 0 zero-point is not supported by Exllama due to "
|
||||
"a bug in the original GPTQ checkpoint format leading to "
|
||||
"exllama kernel adding 1 to the zero points during "
|
||||
"inference")
|
||||
zeros = pack_quantized_values_into_int32(zeros,
|
||||
c.weight_type,
|
||||
packed_dim=1)
|
||||
setattr(layer, self.w_zp_name,
|
||||
torch.nn.Parameter(zeros, requires_grad=False))
|
||||
|
||||
if c.has_g_idx:
|
||||
|
||||
def transform_w_g_idx(x):
|
||||
# Exllama wants the permutation array instead of the group
|
||||
# indices
|
||||
return torch.argsort(x).to(torch.int)
|
||||
|
||||
self._transform_param(layer, self.w_gidx_name, transform_w_g_idx)
|
||||
else:
|
||||
self.w_gidx_name = "g_idx"
|
||||
empty_g_idx = torch.nn.Parameter(torch.empty((0, ),
|
||||
dtype=torch.int,
|
||||
device=device),
|
||||
requires_grad=False)
|
||||
setattr(layer, self.w_gidx_name, empty_g_idx)
|
||||
|
||||
def transform_w_q(x):
|
||||
assert isinstance(x, BasevLLMParameter)
|
||||
assert self.w_gidx_name is not None
|
||||
g_idx = getattr(layer, self.w_gidx_name)
|
||||
|
||||
permute_param_layout_(x, input_dim=0, output_dim=1, packed_dim=0)
|
||||
x_cont = x.data.contiguous()
|
||||
ops.gptq_shuffle(x_cont, g_idx, c.weight_type.size_bits)
|
||||
return x_cont
|
||||
|
||||
def transform_w_s(x):
|
||||
assert isinstance(x, BasevLLMParameter)
|
||||
permute_param_layout_(x, input_dim=0, output_dim=1)
|
||||
x.data = x.data.contiguous()
|
||||
return x.to(dtype=c.act_type)
|
||||
|
||||
# Repack weights and scales for Machete
|
||||
self._transform_param(layer, self.w_q_name, transform_w_q)
|
||||
self._transform_param(layer, self.w_s_name, transform_w_s)
|
||||
|
||||
def apply_weights(self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
c = self.config
|
||||
|
||||
x_2d = x.reshape(-1, x.shape[-1])
|
||||
out_shape = x.shape[:-1] + (c.partition_weight_shape[1], )
|
||||
|
||||
w_q, w_s, w_zp, w_g_idx = self._get_weight_params(layer)
|
||||
|
||||
assert w_zp is not None, "Zero points are required by Exllama"
|
||||
assert w_g_idx is not None, "Group index is required by Exllama"
|
||||
output = ops.gptq_gemm(x_2d, w_q, w_zp, w_s, w_g_idx, True,
|
||||
c.weight_type.size_bits)
|
||||
|
||||
if bias is not None:
|
||||
output.add_(bias)
|
||||
return output.reshape(out_shape)
|
@ -8,7 +8,7 @@ from vllm.model_executor.layers.quantization.utils.machete_utils import (
|
||||
MACHETE_SUPPORTED_GROUP_SIZES, check_machete_supports_shape,
|
||||
query_machete_supported_quant_types)
|
||||
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
||||
pack_weights_into_int32, unpack_weights_into_int32)
|
||||
pack_quantized_values_into_int32, unpack_quantized_values_into_int32)
|
||||
from vllm.model_executor.parameter import (BasevLLMParameter,
|
||||
permute_param_layout_)
|
||||
|
||||
@ -71,13 +71,13 @@ class MacheteLinearKernel(MPLinearKernel):
|
||||
assert isinstance(x, BasevLLMParameter)
|
||||
permute_param_layout_(x, input_dim=0, output_dim=1, packed_dim=0)
|
||||
if c.has_g_idx:
|
||||
x_unpacked = unpack_weights_into_int32(x.data,
|
||||
c.weight_type,
|
||||
packed_dim=0)
|
||||
x_unpacked = unpack_quantized_values_into_int32(x.data,
|
||||
c.weight_type,
|
||||
packed_dim=0)
|
||||
x_perm = x_unpacked[perm, :]
|
||||
x.data = pack_weights_into_int32(x_perm,
|
||||
c.weight_type,
|
||||
packed_dim=0)
|
||||
x.data = pack_quantized_values_into_int32(x_perm,
|
||||
c.weight_type,
|
||||
packed_dim=0)
|
||||
x.data = ops.machete_prepack_B(x.data.t().contiguous().t(),
|
||||
self.config.weight_type)
|
||||
return x
|
||||
|
@ -20,9 +20,9 @@ FUSED_LAYER_NAME_MAPPING = {
|
||||
}
|
||||
|
||||
|
||||
def pack_weights_into_int32(w_q: torch.Tensor,
|
||||
wtype: ScalarType,
|
||||
packed_dim: int = 0):
|
||||
def pack_quantized_values_into_int32(w_q: torch.Tensor,
|
||||
wtype: ScalarType,
|
||||
packed_dim: int = 0):
|
||||
# move dim to pack to the end
|
||||
perm = (*[i for i in range(len(w_q.shape)) if i != packed_dim], packed_dim)
|
||||
inv_perm = tuple(perm.index(i) for i in range(len(perm)))
|
||||
@ -42,9 +42,9 @@ def pack_weights_into_int32(w_q: torch.Tensor,
|
||||
return res.permute(inv_perm)
|
||||
|
||||
|
||||
def unpack_weights_into_int32(w_q: torch.Tensor,
|
||||
wtype: ScalarType,
|
||||
packed_dim: int = 0):
|
||||
def unpack_quantized_values_into_int32(w_q: torch.Tensor,
|
||||
wtype: ScalarType,
|
||||
packed_dim: int = 0):
|
||||
# move dim to pack to the end
|
||||
perm = (*[i for i in range(len(w_q.shape)) if i != packed_dim], packed_dim)
|
||||
inv_perm = tuple(perm.index(i) for i in range(len(perm)))
|
||||
|
@ -27,6 +27,8 @@ class scalar_types:
|
||||
float6_e3m2f = ScalarType.float_(3, 2, True, NanRepr.NONE.value)
|
||||
|
||||
# "gptq" types
|
||||
uint2b2 = ScalarType.uint(2, 2)
|
||||
uint3b4 = ScalarType.uint(3, 4)
|
||||
uint4b8 = ScalarType.uint(4, 8)
|
||||
uint8b128 = ScalarType.uint(8, 128)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user