[Model] Add support for DBRX (#3660)

This commit is contained in:
Megha Agarwal 2024-03-27 13:01:46 -07:00 committed by GitHub
parent d18f4e73f3
commit e24336b5a7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 713 additions and 0 deletions

View File

@ -67,6 +67,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
- Baichuan & Baichuan2 (`baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc.)
- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)
- ChatGLM (`THUDM/chatglm2-6b`, `THUDM/chatglm3-6b`, etc.)
- DBRX (`databricks/dbrx-base`, `databricks/dbrx-instruct` etc.)
- DeciLM (`Deci/DeciLM-7B`, `Deci/DeciLM-7B-instruct`, etc.)
- Falcon (`tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.)
- Gemma (`google/gemma-2b`, `google/gemma-7b`, etc.)

View File

@ -27,6 +27,10 @@ Alongside each architecture, we include some popular models that use it.
- ChatGLM
- :code:`THUDM/chatglm2-6b`, :code:`THUDM/chatglm3-6b`, etc.
- ✅︎
* - :code:`DbrxForCausalLM`
- DBRX
- :code:`databricks/dbrx-base`, :code:`databricks/dbrx-instruct`, etc.
-
* - :code:`DeciLMForCausalLM`
- DeciLM
- :code:`Deci/DeciLM-7B`, :code:`Deci/DeciLM-7B-instruct`, etc.

View File

@ -14,3 +14,4 @@ prometheus_client >= 0.18.0
pynvml == 11.5.0
triton >= 2.1.0
outlines == 0.0.34
tiktoken == 0.6.0 # Required for DBRX tokenizer

View File

@ -277,6 +277,11 @@ class ModelConfig:
# Currently, tensor parallelism is not supported in this case.
return 1
# For DBRX and MPT
if self.hf_config.model_type in ["dbrx", "mpt"]:
return getattr(self.hf_config.attn_config, "kv_n_heads",
self.hf_config.num_attention_heads)
attributes = [
# For Falcon:
"n_head_kv",

View File

@ -17,6 +17,7 @@ _MODELS = {
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
"ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"),
"ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"),
"DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"),
"DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"),
"DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"),
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),

View File

@ -0,0 +1,421 @@
# coding=utf-8
from typing import List, Optional
import torch
import torch.nn as nn
from vllm.attention import Attention, AttentionMetadata
from vllm.model_executor.layers.fused_moe import fused_moe
from vllm.model_executor.layers.linear import (LinearMethodBase,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.parallel_utils.communication_op import (
tensor_model_parallel_all_reduce)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.utils import set_weight_attrs
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs.dbrx import DbrxConfig
class DbrxRouter(nn.Module):
"""A Router implementation for DBRX that returns logits for each expert
per token.
"""
def __init__(
self,
config: DbrxConfig,
params_dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
self.num_total_experts = config.ffn_config.moe_num_experts
self.d_model = config.d_model
self.layer = ReplicatedLinear(
self.d_model,
self.num_total_experts,
bias=False,
params_dtype=params_dtype,
linear_method=None,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
router_logits, _ = self.layer(hidden_states)
return router_logits
class DbrxExperts(nn.Module):
"""A tensor-parallel MoE implementation for DBRX.
Each expert's weights are sharded across all ranks and a fused MoE
kernel is used for the forward pass, and finally we reduce the outputs
across ranks.
"""
def __init__(
self,
config: DbrxConfig,
linear_method: Optional[LinearMethodBase] = None,
params_dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
self.num_total_experts = config.ffn_config.moe_num_experts
self.top_k = config.ffn_config.moe_top_k
self.d_model = config.d_model
self.intermediate_size = (config.ffn_config.ffn_hidden_size //
self.tp_size)
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
self.router = DbrxRouter(config, self.params_dtype)
self.ws = nn.Parameter(
torch.empty(
self.num_total_experts,
2 * self.intermediate_size,
self.d_model,
device="cuda",
dtype=self.params_dtype,
))
self.w2s = nn.Parameter(
torch.empty(
self.num_total_experts,
self.d_model,
self.intermediate_size,
device="cuda",
dtype=self.params_dtype,
))
set_weight_attrs(
self.ws,
{
"weight_loader": self.weight_loader,
},
)
set_weight_attrs(
self.w2s,
{
"weight_loader": self.weight_loader,
},
)
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
weight_name: str):
tp_rank = get_tensor_model_parallel_rank()
param_data = param.data
shard_size = self.intermediate_size
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
# DBRX uses GLU for each experts.
# GLU has 3 linear layers: w1, v1 and w2.
if weight_name.endswith("w1"):
loaded_weight = torch.reshape(
loaded_weight,
[-1, self.intermediate_size * self.tp_size, self.d_model],
)
param_data[:, 0:shard_size, :] = loaded_weight[:, shard, :]
if weight_name.endswith("v1"):
loaded_weight = torch.reshape(
loaded_weight,
[-1, self.intermediate_size * self.tp_size, self.d_model],
)
param_data[:,
shard_size:2 * shard_size, :] = loaded_weight[:,
shard, :]
if weight_name.endswith("w2"):
loaded_weight = torch.reshape(
loaded_weight,
[-1, self.intermediate_size * self.tp_size, self.d_model],
).transpose(1, 2)
param_data[:] = loaded_weight[:, :, shard]
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_size = hidden_states.shape
hidden_states = hidden_states.view(-1, self.d_model)
# router_logits: (num_tokens, n_experts)
router_logits = self.router(hidden_states)
final_hidden_states = fused_moe(
hidden_states,
self.ws,
self.w2s,
router_logits,
self.top_k,
renormalize=True,
inplace=True,
)
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(
final_hidden_states)
return final_hidden_states.view(num_tokens, hidden_size)
class DbrxAttention(nn.Module):
def __init__(
self,
config: DbrxConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.d_model = config.d_model
self.total_num_heads = config.n_heads
self.head_dim = self.d_model // self.total_num_heads
self.total_num_kv_heads = config.attn_config.kv_n_heads
self.clip_qkv = config.attn_config.clip_qkv
self.rope_theta = config.attn_config.rope_theta
self.max_position = config.max_seq_len
# pylint: disable=invalid-name
self.Wqkv = QKVParallelLinear(
self.d_model,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
linear_method=linear_method,
)
self.out_proj = RowParallelLinear(
self.d_model,
self.d_model,
bias=False,
linear_method=linear_method,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position,
base=int(self.rope_theta),
is_neox_style=True,
)
tp_world_size = get_tensor_model_parallel_world_size()
self.tp_size = tp_world_size
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
if self.total_num_kv_heads >= tp_world_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_world_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_world_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.Wqkv(hidden_states)
if self.clip_qkv is not None:
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
hidden_states, _ = self.out_proj(attn_output)
return hidden_states
class DbrxFusedNormAttention(nn.Module):
def __init__(
self,
config: DbrxConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.d_model = config.d_model
self.attn = DbrxAttention(config, linear_method)
self.norm_1 = nn.LayerNorm(self.d_model)
self.norm_2 = nn.LayerNorm(self.d_model)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.norm_1(hidden_states)
x = self.attn(
position_ids=position_ids,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
hidden_states = residual + x
residual = hidden_states
hidden_states = self.norm_2(hidden_states)
return hidden_states, residual
class DbrxBlock(nn.Module):
def __init__(
self,
config: DbrxConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.norm_attn_norm = DbrxFusedNormAttention(config, linear_method)
self.ffn = DbrxExperts(config, linear_method)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
hidden_states, residual = self.norm_attn_norm(
position_ids=position_ids,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
hidden_states = self.ffn(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
class DbrxModel(nn.Module):
def __init__(
self,
config: DbrxConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.wte = VocabParallelEmbedding(
config.vocab_size,
config.d_model,
)
self.blocks = nn.ModuleList(
[DbrxBlock(config, linear_method) for _ in range(config.n_layers)])
self.norm_f = nn.LayerNorm(config.d_model, eps=1e-5)
for module in self.modules():
if hasattr(module, "bias") and isinstance(module.bias,
nn.Parameter):
# Remove the bias term in Linear and LayerNorm.
module.register_parameter("bias", None)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
hidden_states = self.wte(input_ids)
for i in range(len(self.blocks)):
block = self.blocks[i]
hidden_states = block(
position_ids,
hidden_states,
kv_caches[i],
attn_metadata,
)
hidden_states = self.norm_f(hidden_states)
return hidden_states
class DbrxForCausalLM(nn.Module):
def __init__(
self,
config: DbrxConfig,
linear_method: Optional[LinearMethodBase] = None,
):
super().__init__()
self.config = config
self.linear_method = linear_method
self.unpadded_vocab_size = config.vocab_size
self.transformer = DbrxModel(config, linear_method)
self.lm_head = ParallelLMHead(
config.vocab_size,
config.d_model,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size)
self.sampler = Sampler()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches,
attn_metadata)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head.weight, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(
self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None,
):
expert_params_mapping = [(
"ws" if weight_name in ["w1", "v1"] else "w2s",
f"experts.mlp.{weight_name}",
) for weight_name in ["w1", "v1", "w2"]]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
for param_name, weight_name in expert_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, weight_name)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)

View File

@ -6,6 +6,7 @@ from vllm.transformers_utils.configs import *
_CONFIG_REGISTRY = {
"chatglm": ChatGLMConfig,
"dbrx": DbrxConfig,
"mpt": MPTConfig,
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)

View File

@ -1,4 +1,5 @@
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
from vllm.transformers_utils.configs.dbrx import DbrxConfig
# RWConfig is for the original tiiuae/falcon-40b(-instruct) and
# tiiuae/falcon-7b(-instruct) models. Newer Falcon models will use the
# `FalconConfig` class from the official HuggingFace transformers library.
@ -8,6 +9,7 @@ from vllm.transformers_utils.configs.mpt import MPTConfig
__all__ = [
"ChatGLMConfig",
"DbrxConfig",
"MPTConfig",
"RWConfig",
"JAISConfig",

View File

@ -0,0 +1,277 @@
# yapf: disable
# ruff: noqa: E501
# coding=utf-8
# Copied from
# https://huggingface.co/databricks/dbrx-base/blob/main/configuration_dbrx.py
"""Dbrx configuration."""
from typing import Any, Optional
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class DbrxAttentionConfig(PretrainedConfig):
"""Configuration class for Dbrx Attention.
[`DbrxAttention`] class. It is used to instantiate attention layers
according to the specified arguments, defining the layers architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
attn_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability for the attention layers.
clip_qkv (`float`, *optional*, defaults to None):
If not `None`, clip the queries, keys, and values in the attention layer to this value.
kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
rope_theta (float): The base frequency for rope.
"""
def __init__(
self,
attn_pdrop: float = 0,
clip_qkv: Optional[float] = None,
kv_n_heads: int = 1,
rope_theta: float = 10000.0,
**kwargs: Any,
):
super().__init__(**kwargs)
self.attn_pdrop = attn_pdrop
self.clip_qkv = clip_qkv
self.kv_n_heads = kv_n_heads
self.rope_theta = rope_theta
for k in ["model_type"]:
if k in kwargs:
kwargs.pop(k)
if len(kwargs) != 0:
raise ValueError(f"Found unknown {kwargs=}")
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: str, **kwargs: Any
) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(
pretrained_model_name_or_path, **kwargs
)
if config_dict.get("model_type") == "dbrx":
config_dict = config_dict["attn_config"]
if (
"model_type" in config_dict
and hasattr(cls, "model_type")
and config_dict["model_type"] != cls.model_type
):
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class DbrxFFNConfig(PretrainedConfig):
"""Configuration class for Dbrx FFN.
[`DbrxFFN`] class. It is used to instantiate feedforward layers according to
the specified arguments, defining the layers architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
ffn_act_fn (dict, optional): A dict specifying activation function for the FFN.
The dict should have a key 'name' with the value being the name of
the activation function along with any additional keyword arguments.
ffn_hidden_size (int, optional): The hidden size of the feedforward network.
moe_num_experts (int, optional): The number of experts in the mixture of experts layer.
moe_top_k (int, optional): The number of experts to use in the mixture of experts layer.
moe_jitter_eps (float, optional): The jitter epsilon for the mixture of experts layer.
moe_loss_weight (float, optional): The loss weight for the mixture of experts layer.
moe_normalize_expert_weights (float, optional): The normalization factor for the expert weights.
uniform_expert_assignment (bool, optional): Whether to use uniform expert assignment.
This should only be used for benchmarking purposes.
"""
def __init__(
self,
ffn_act_fn: Optional[dict] = None,
ffn_hidden_size: int = 3584,
moe_num_experts: int = 4,
moe_top_k: int = 1,
moe_jitter_eps: Optional[float] = None,
moe_loss_weight: float = 0.01,
moe_normalize_expert_weights: Optional[float] = 1,
uniform_expert_assignment: bool = False,
**kwargs: Any,
):
super().__init__()
if ffn_act_fn is None:
ffn_act_fn = {"name": "silu"}
self.ffn_act_fn = ffn_act_fn
self.ffn_hidden_size = ffn_hidden_size
self.moe_num_experts = moe_num_experts
self.moe_top_k = moe_top_k
self.moe_jitter_eps = moe_jitter_eps
self.moe_loss_weight = moe_loss_weight
self.moe_normalize_expert_weights = moe_normalize_expert_weights
self.uniform_expert_assignment = uniform_expert_assignment
for k in ["model_type"]:
if k in kwargs:
kwargs.pop(k)
if len(kwargs) != 0:
raise ValueError(f"Found unknown {kwargs=}")
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: str, **kwargs: Any
) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(
pretrained_model_name_or_path, **kwargs
)
if config_dict.get("model_type") == "dbrx":
config_dict = config_dict["ffn_config"]
if (
"model_type" in config_dict
and hasattr(cls, "model_type")
and config_dict["model_type"] != cls.model_type
):
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class DbrxConfig(PretrainedConfig):
"""Configuration class for Dbrx.
[`DbrxModel`]. It is used to instantiate a Dbrx model according to the
specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
d_model (`int`, *optional*, defaults to 6144):
Dimensionality of the embeddings and hidden states.
n_heads (`int`, *optional*, defaults to 48):
Number of attention heads for each attention layer in the Transformer encoder.
n_layers (`int`, *optional*, defaults to 40):
Number of hidden layers in the Transformer encoder.
max_seq_len (`int`, *optional*, defaults to 32768):
The maximum sequence length of the model.
vocab_size (`int`, *optional*, defaults to 100352):
Vocabulary size of the Dbrx model. Defines the maximum number of different tokens that can be represented by
the `inputs_ids` passed when calling [`DbrxModel`].
resid_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability applied to the attention output before combining with residual.
emb_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability for the embedding layer.
attn_config (`dict`, *optional*):
A dictionary used to configure the model's attention module.
ffn_config (`dict`, *optional*):
A dictionary used to configure the model's FFN module.
use_cache (`bool`, *optional*, defaults to `False`):
Whether or not the model should return the last key/values attentions (not used by all models).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabling this will also
allow the model to output the auxiliary loss. See [here]() for more details
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
Example:
```python
>>> from transformers import DbrxConfig, DbrxModel
>>> # Initializing a Dbrx configuration
>>> configuration = DbrxConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = DbrxModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "dbrx"
attribute_map = {
"num_attention_heads": "n_heads",
"hidden_size": "d_model",
"num_hidden_layers": "n_layers",
"max_position_embeddings": "max_seq_len",
}
def __init__(
self,
d_model: int = 2048,
n_heads: int = 16,
n_layers: int = 24,
max_seq_len: int = 2048,
vocab_size: int = 32000,
resid_pdrop: float = 0.0,
emb_pdrop: float = 0.0,
attn_config: Optional[DbrxAttentionConfig] = None,
ffn_config: Optional[DbrxFFNConfig] = None,
use_cache: bool = True,
initializer_range: float = 0.02,
output_router_logits: bool = False,
router_aux_loss_coef: float = 0.05,
**kwargs: Any,
):
if attn_config is None:
self.attn_config = DbrxAttentionConfig()
elif isinstance(attn_config, dict):
self.attn_config = DbrxAttentionConfig(**attn_config)
else:
self.attn_config = attn_config
if ffn_config is None:
self.ffn_config = DbrxFFNConfig()
elif isinstance(ffn_config, dict):
self.ffn_config = DbrxFFNConfig(**ffn_config)
else:
self.ffn_config = ffn_config
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.max_seq_len = max_seq_len
self.vocab_size = vocab_size
self.resid_pdrop = resid_pdrop
self.emb_pdrop = emb_pdrop
self.use_cache = use_cache
self.initializer_range = initializer_range
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
tie_word_embeddings = kwargs.pop("tie_word_embeddings", False)
if tie_word_embeddings:
raise ValueError(
"tie_word_embeddings is not supported for Dbrx models."
)
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)