[issue templates] add some issue templates (#3412)

This commit is contained in:
youkaichao 2024-03-14 13:16:00 -07:00 committed by GitHub
parent c17ca8ef18
commit dfc77408bd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 1005 additions and 0 deletions

View File

@ -0,0 +1,22 @@
name: 📚 Documentation
description: Report an issue related to https://docs.vllm.ai/
title: "[Doc]: "
labels: ["doc"]
body:
- type: textarea
attributes:
label: 📚 The doc issue
description: >
A clear and concise description of what content in https://docs.vllm.ai/ is an issue.
validations:
required: true
- type: textarea
attributes:
label: Suggest a potential alternative/fix
description: >
Tell us how we could improve the documentation in this regard.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,39 @@
name: 🛠️ Installation
description: Report an issue here when you hit errors during installation.
title: "[Installation]: "
labels: ["installation"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Your current environment
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
value: |
```text
The output of `python collect_env.py`
```
validations:
required: true
- type: textarea
attributes:
label: How you are installing vllm
description: |
Paste the full command you are trying to execute.
value: |
```sh
pip install -vvv vllm
```
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

37
.github/ISSUE_TEMPLATE/300-usage.yml vendored Normal file
View File

@ -0,0 +1,37 @@
name: 💻 Usage
description: Raise an issue here if you don't know how to use vllm.
title: "[Usage]: "
labels: ["usage"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Your current environment
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
value: |
```text
The output of `python collect_env.py`
```
validations:
required: true
- type: textarea
attributes:
label: How would you like to use vllm
description: |
A detailed description of how you want to use vllm.
value: |
I want to run inference of a [specific model](put link here). I don't know how to integrate it with vllm.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,81 @@
name: 🐛 Bug report
description: Raise an issue here if you find a bug.
title: "[Bug]: "
labels: ["bug"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Your current environment
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
value: |
```text
The output of `python collect_env.py`
```
validations:
required: true
- type: textarea
attributes:
label: 🐛 Describe the bug
description: |
Please provide a clear and concise description of what the bug is.
If relevant, add a minimal example so that we can reproduce the error by running the code. It is very important for the snippet to be as succinct (minimal) as possible, so please take time to trim down any irrelevant code to help us debug efficiently. We are going to copy-paste your code and we expect to get the same result as you did: avoid any external data, and include the relevant imports, etc. For example:
```python
from vllm import LLM, SamplingParams
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="facebook/opt-125m")
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
If the code is too long (hopefully, it isn't), feel free to put it in a public gist and link it in the issue: https://gist.github.com.
Please also paste or describe the results you observe instead of the expected results. If you observe an error, please paste the error message including the **full** traceback of the exception. It may be relevant to wrap error messages in ```` ```triple quotes blocks``` ````.
placeholder: |
A clear and concise description of what the bug is.
```python
# Sample code to reproduce the problem
```
```
The error message you got, with the full traceback.
```
validations:
required: true
- type: markdown
attributes:
value: >
⚠️ Please separate bugs of `transformers` implementation or usage from bugs of `vllm`. If you think anything is wrong with the models' output:
- Try the counterpart of `transformers` first. If the error appears, please go to [their issues](https://github.com/huggingface/transformers/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc).
- If the error only appears in vllm, please provide the detailed script of how you run `transformers` and `vllm`, also highlight the difference and what you expect.
Thanks for contributing 🎉!

View File

@ -0,0 +1,31 @@
name: 🚀 Feature request
description: Submit a proposal/request for a new vllm feature
title: "[Feature]: "
labels: ["feature"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: 🚀 The feature, motivation and pitch
description: >
A clear and concise description of the feature proposal. Please outline the motivation for the proposal. Is your feature request related to a specific problem? e.g., *"I'm working on X and would like Y to be possible"*. If this is related to another GitHub issue, please link here too.
validations:
required: true
- type: textarea
attributes:
label: Alternatives
description: >
A description of any alternative solutions or features you've considered, if any.
- type: textarea
attributes:
label: Additional context
description: >
Add any other context or screenshots about the feature request.
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,33 @@
name: 🤗 Support request for a new model from huggingface
description: Submit a proposal/request for a new model from huggingface
title: "[New Model]: "
labels: ["new model"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
#### We also highly recommend you read https://docs.vllm.ai/en/latest/models/adding_model.html first to understand how to add a new model.
- type: textarea
attributes:
label: The model to consider.
description: >
A huggingface url, pointing to the model, e.g. https://huggingface.co/openai-community/gpt2 .
validations:
required: true
- type: textarea
attributes:
label: The closest model vllm already supports.
description: >
Here is the list of models already supported by vllm: https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/models . Which model is the most similar to the model you want to add support for?
- type: textarea
attributes:
label: What's your difficulty of supporting the model you want?
description: >
For example, any new operators or new architecture?
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,51 @@
name: ⚡ Discussion on the performance of vllm
description: Submit a proposal/discussion about the performance of vllm
title: "[Performance]: "
labels: ["performance"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Proposal to improve performance
description: >
How do you plan to improve vllm's performance?
validations:
required: false
- type: textarea
attributes:
label: Report of performance regression
description: >
Please provide detailed description of performance comparison to confirm the regression. You may want to run the benchmark script at https://github.com/vllm-project/vllm/tree/main/benchmarks .
validations:
required: false
- type: textarea
attributes:
label: Misc discussion on performance
description: >
Anything about the performance.
validations:
required: false
- type: textarea
attributes:
label: Your current environment (if you think it is necessary)
description: |
Please run the following and paste the output below.
```sh
wget https://raw.githubusercontent.com/vllm-project/vllm/main/collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
```
value: |
```text
The output of `python collect_env.py`
```
validations:
required: false
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

View File

@ -0,0 +1,21 @@
name: 🎲 Misc/random discussions that do not fit into the above categories.
description: Submit a discussion as you like. Note that developers are heavily overloaded and we mainly rely on community users to answer these issues.
title: "[Misc]: "
labels: ["misc"]
body:
- type: markdown
attributes:
value: >
#### Before submitting an issue, please make sure the issue hasn't been already addressed by searching through [the existing and past issues](https://github.com/vllm-project/vllm/issues?q=is%3Aissue+sort%3Acreated-desc+).
- type: textarea
attributes:
label: Anything you want to discuss about vllm.
description: >
Anything you want to discuss about vllm.
validations:
required: true
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!

1
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@ -0,0 +1 @@
blank_issues_enabled: false

1
.yapfignore Normal file
View File

@ -0,0 +1 @@
collect_env.py

688
collect_env.py Normal file
View File

@ -0,0 +1,688 @@
# code borrowed from https://github.com/pytorch/pytorch/blob/main/torch/utils/collect_env.py
# Unlike the rest of the PyTorch this file must be python2 compliant.
# This script outputs relevant system environment info
# Run it with `python collect_env.py` or `python -m torch.utils.collect_env`
import datetime
import locale
import re
import subprocess
import sys
import os
from collections import namedtuple
try:
import torch
TORCH_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
TORCH_AVAILABLE = False
# System Environment Information
SystemEnv = namedtuple('SystemEnv', [
'torch_version',
'is_debug_build',
'cuda_compiled_version',
'gcc_version',
'clang_version',
'cmake_version',
'os',
'libc_version',
'python_version',
'python_platform',
'is_cuda_available',
'cuda_runtime_version',
'cuda_module_loading',
'nvidia_driver_version',
'nvidia_gpu_models',
'cudnn_version',
'pip_version', # 'pip' or 'pip3'
'pip_packages',
'conda_packages',
'hip_compiled_version',
'hip_runtime_version',
'miopen_runtime_version',
'caching_allocator_config',
'is_xnnpack_available',
'cpu_info',
'rocm_version', # vllm specific field
'neuron_sdk_version', # vllm specific field
'vllm_version', # vllm specific field
'vllm_build_flags', # vllm specific field
'gpu_topo', # vllm specific field
])
DEFAULT_CONDA_PATTERNS = {
"torch",
"numpy",
"cudatoolkit",
"soumith",
"mkl",
"magma",
"triton",
"optree",
}
DEFAULT_PIP_PATTERNS = {
"torch",
"numpy",
"mypy",
"flake8",
"triton",
"optree",
"onnx",
}
def run(command):
"""Return (return-code, stdout, stderr)."""
shell = True if type(command) is str else False
p = subprocess.Popen(command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, shell=shell)
raw_output, raw_err = p.communicate()
rc = p.returncode
if get_platform() == 'win32':
enc = 'oem'
else:
enc = locale.getpreferredencoding()
output = raw_output.decode(enc)
err = raw_err.decode(enc)
return rc, output.strip(), err.strip()
def run_and_read_all(run_lambda, command):
"""Run command using run_lambda; reads and returns entire output if rc is 0."""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out
def run_and_parse_first_match(run_lambda, command, regex):
"""Run command using run_lambda, returns the first regex match if it exists."""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
match = re.search(regex, out)
if match is None:
return None
return match.group(1)
def run_and_return_first_line(run_lambda, command):
"""Run command using run_lambda and returns first line if output is not empty."""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out.split('\n')[0]
def get_conda_packages(run_lambda, patterns=None):
if patterns is None:
patterns = DEFAULT_CONDA_PATTERNS
conda = os.environ.get('CONDA_EXE', 'conda')
out = run_and_read_all(run_lambda, "{} list".format(conda))
if out is None:
return out
return "\n".join(
line
for line in out.splitlines()
if not line.startswith("#")
and any(name in line for name in patterns)
)
def get_gcc_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'gcc --version', r'gcc (.*)')
def get_clang_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'clang --version', r'clang version (.*)')
def get_cmake_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'cmake --version', r'cmake (.*)')
def get_nvidia_driver_version(run_lambda):
if get_platform() == 'darwin':
cmd = 'kextstat | grep -i cuda'
return run_and_parse_first_match(run_lambda, cmd,
r'com[.]nvidia[.]CUDA [(](.*?)[)]')
smi = get_nvidia_smi()
return run_and_parse_first_match(run_lambda, smi, r'Driver Version: (.*?) ')
def get_gpu_info(run_lambda):
if get_platform() == 'darwin' or (TORCH_AVAILABLE and hasattr(torch.version, 'hip') and torch.version.hip is not None):
if TORCH_AVAILABLE and torch.cuda.is_available():
if torch.version.hip is not None:
prop = torch.cuda.get_device_properties(0)
if hasattr(prop, "gcnArchName"):
gcnArch = " ({})".format(prop.gcnArchName)
else:
gcnArch = "NoGCNArchNameOnOldPyTorch"
else:
gcnArch = ""
return torch.cuda.get_device_name(None) + gcnArch
return None
smi = get_nvidia_smi()
uuid_regex = re.compile(r' \(UUID: .+?\)')
rc, out, _ = run_lambda(smi + ' -L')
if rc != 0:
return None
# Anonymize GPUs by removing their UUID
return re.sub(uuid_regex, '', out)
def get_running_cuda_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'nvcc --version', r'release .+ V(.*)')
def get_cudnn_version(run_lambda):
"""Return a list of libcudnn.so; it's hard to tell which one is being used."""
if get_platform() == 'win32':
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
cuda_path = os.environ.get('CUDA_PATH', "%CUDA_PATH%")
where_cmd = os.path.join(system_root, 'System32', 'where')
cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
elif get_platform() == 'darwin':
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
cudnn_cmd = 'ls /usr/local/cuda/lib/libcudnn*'
else:
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
rc, out, _ = run_lambda(cudnn_cmd)
# find will return 1 if there are permission errors or if not found
if len(out) == 0 or (rc != 1 and rc != 0):
l = os.environ.get('CUDNN_LIBRARY')
if l is not None and os.path.isfile(l):
return os.path.realpath(l)
return None
files_set = set()
for fn in out.split('\n'):
fn = os.path.realpath(fn) # eliminate symbolic links
if os.path.isfile(fn):
files_set.add(fn)
if not files_set:
return None
# Alphabetize the result because the order is non-deterministic otherwise
files = sorted(files_set)
if len(files) == 1:
return files[0]
result = '\n'.join(files)
return 'Probably one of the following:\n{}'.format(result)
def get_nvidia_smi():
# Note: nvidia-smi is currently available only on Windows and Linux
smi = 'nvidia-smi'
if get_platform() == 'win32':
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
program_files_root = os.environ.get('PROGRAMFILES', 'C:\\Program Files')
legacy_path = os.path.join(program_files_root, 'NVIDIA Corporation', 'NVSMI', smi)
new_path = os.path.join(system_root, 'System32', smi)
smis = [new_path, legacy_path]
for candidate_smi in smis:
if os.path.exists(candidate_smi):
smi = '"{}"'.format(candidate_smi)
break
return smi
def get_rocm_version(run_lambda):
"""Returns the ROCm version if available, otherwise 'N/A'."""
return run_and_parse_first_match(run_lambda, 'hipcc --version', r'HIP version: (\S+)')
def get_neuron_sdk_version(run_lambda):
# Adapted from your install script
try:
result = run_lambda(["neuron-ls"])
return result if result[0] == 0 else 'N/A'
except Exception:
return 'N/A'
def get_vllm_version():
try:
import vllm
return vllm.__version__
except ImportError:
return 'N/A'
def summarize_vllm_build_flags():
# This could be a static method if the flags are constant, or dynamic if you need to check environment variables, etc.
return 'CUDA Archs: {}; ROCm: {}; Neuron: {}'.format(
os.environ.get('TORCH_CUDA_ARCH_LIST', 'Not Set'),
'Enabled' if os.environ.get('ROCM_HOME') else 'Disabled',
'Enabled' if os.environ.get('NEURON_CORES') else 'Disabled',
)
def get_gpu_topo(run_lambda):
if get_platform() == 'linux':
return run_and_read_all(run_lambda, 'nvidia-smi topo -m')
return None
# example outputs of CPU infos
# * linux
# Architecture: x86_64
# CPU op-mode(s): 32-bit, 64-bit
# Address sizes: 46 bits physical, 48 bits virtual
# Byte Order: Little Endian
# CPU(s): 128
# On-line CPU(s) list: 0-127
# Vendor ID: GenuineIntel
# Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
# CPU family: 6
# Model: 106
# Thread(s) per core: 2
# Core(s) per socket: 32
# Socket(s): 2
# Stepping: 6
# BogoMIPS: 5799.78
# Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr
# sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl
# xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16
# pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
# hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced
# fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap
# avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1
# xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq
# avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities
# Virtualization features:
# Hypervisor vendor: KVM
# Virtualization type: full
# Caches (sum of all):
# L1d: 3 MiB (64 instances)
# L1i: 2 MiB (64 instances)
# L2: 80 MiB (64 instances)
# L3: 108 MiB (2 instances)
# NUMA:
# NUMA node(s): 2
# NUMA node0 CPU(s): 0-31,64-95
# NUMA node1 CPU(s): 32-63,96-127
# Vulnerabilities:
# Itlb multihit: Not affected
# L1tf: Not affected
# Mds: Not affected
# Meltdown: Not affected
# Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
# Retbleed: Not affected
# Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
# Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
# Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
# Srbds: Not affected
# Tsx async abort: Not affected
# * win32
# Architecture=9
# CurrentClockSpeed=2900
# DeviceID=CPU0
# Family=179
# L2CacheSize=40960
# L2CacheSpeed=
# Manufacturer=GenuineIntel
# MaxClockSpeed=2900
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
# ProcessorType=3
# Revision=27142
#
# Architecture=9
# CurrentClockSpeed=2900
# DeviceID=CPU1
# Family=179
# L2CacheSize=40960
# L2CacheSpeed=
# Manufacturer=GenuineIntel
# MaxClockSpeed=2900
# Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
# ProcessorType=3
# Revision=27142
def get_cpu_info(run_lambda):
rc, out, err = 0, '', ''
if get_platform() == 'linux':
rc, out, err = run_lambda('lscpu')
elif get_platform() == 'win32':
rc, out, err = run_lambda('wmic cpu get Name,Manufacturer,Family,Architecture,ProcessorType,DeviceID, \
CurrentClockSpeed,MaxClockSpeed,L2CacheSize,L2CacheSpeed,Revision /VALUE')
elif get_platform() == 'darwin':
rc, out, err = run_lambda("sysctl -n machdep.cpu.brand_string")
cpu_info = 'None'
if rc == 0:
cpu_info = out
else:
cpu_info = err
return cpu_info
def get_platform():
if sys.platform.startswith('linux'):
return 'linux'
elif sys.platform.startswith('win32'):
return 'win32'
elif sys.platform.startswith('cygwin'):
return 'cygwin'
elif sys.platform.startswith('darwin'):
return 'darwin'
else:
return sys.platform
def get_mac_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'sw_vers -productVersion', r'(.*)')
def get_windows_version(run_lambda):
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
wmic_cmd = os.path.join(system_root, 'System32', 'Wbem', 'wmic')
findstr_cmd = os.path.join(system_root, 'System32', 'findstr')
return run_and_read_all(run_lambda, '{} os get Caption | {} /v Caption'.format(wmic_cmd, findstr_cmd))
def get_lsb_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'lsb_release -a', r'Description:\t(.*)')
def check_release_file(run_lambda):
return run_and_parse_first_match(run_lambda, 'cat /etc/*-release',
r'PRETTY_NAME="(.*)"')
def get_os(run_lambda):
from platform import machine
platform = get_platform()
if platform == 'win32' or platform == 'cygwin':
return get_windows_version(run_lambda)
if platform == 'darwin':
version = get_mac_version(run_lambda)
if version is None:
return None
return 'macOS {} ({})'.format(version, machine())
if platform == 'linux':
# Ubuntu/Debian based
desc = get_lsb_version(run_lambda)
if desc is not None:
return '{} ({})'.format(desc, machine())
# Try reading /etc/*-release
desc = check_release_file(run_lambda)
if desc is not None:
return '{} ({})'.format(desc, machine())
return '{} ({})'.format(platform, machine())
# Unknown platform
return platform
def get_python_platform():
import platform
return platform.platform()
def get_libc_version():
import platform
if get_platform() != 'linux':
return 'N/A'
return '-'.join(platform.libc_ver())
def get_pip_packages(run_lambda, patterns=None):
"""Return `pip list` output. Note: will also find conda-installed pytorch and numpy packages."""
if patterns is None:
patterns = DEFAULT_PIP_PATTERNS
# People generally have `pip` as `pip` or `pip3`
# But here it is invoked as `python -mpip`
def run_with_pip(pip):
out = run_and_read_all(run_lambda, pip + ["list", "--format=freeze"])
return "\n".join(
line
for line in out.splitlines()
if any(name in line for name in patterns)
)
pip_version = 'pip3' if sys.version[0] == '3' else 'pip'
out = run_with_pip([sys.executable, '-mpip'])
return pip_version, out
def get_cachingallocator_config():
ca_config = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', '')
return ca_config
def get_cuda_module_loading_config():
if TORCH_AVAILABLE and torch.cuda.is_available():
torch.cuda.init()
config = os.environ.get('CUDA_MODULE_LOADING', '')
return config
else:
return "N/A"
def is_xnnpack_available():
if TORCH_AVAILABLE:
import torch.backends.xnnpack
return str(torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
else:
return "N/A"
def get_env_info():
run_lambda = run
pip_version, pip_list_output = get_pip_packages(run_lambda)
if TORCH_AVAILABLE:
version_str = torch.__version__
debug_mode_str = str(torch.version.debug)
cuda_available_str = str(torch.cuda.is_available())
cuda_version_str = torch.version.cuda
if not hasattr(torch.version, 'hip') or torch.version.hip is None: # cuda version
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
else: # HIP version
def get_version_or_na(cfg, prefix):
_lst = [s.rsplit(None, 1)[-1] for s in cfg if prefix in s]
return _lst[0] if _lst else 'N/A'
cfg = torch._C._show_config().split('\n')
hip_runtime_version = get_version_or_na(cfg, 'HIP Runtime')
miopen_runtime_version = get_version_or_na(cfg, 'MIOpen')
cuda_version_str = 'N/A'
hip_compiled_version = torch.version.hip
else:
version_str = debug_mode_str = cuda_available_str = cuda_version_str = 'N/A'
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
sys_version = sys.version.replace("\n", " ")
conda_packages = get_conda_packages(run_lambda)
rocm_version = get_rocm_version(run_lambda)
neuron_sdk_version = get_neuron_sdk_version(run_lambda)
vllm_version = get_vllm_version()
vllm_build_flags = summarize_vllm_build_flags()
gpu_topo = get_gpu_topo(run_lambda)
return SystemEnv(
torch_version=version_str,
is_debug_build=debug_mode_str,
python_version='{} ({}-bit runtime)'.format(sys_version, sys.maxsize.bit_length() + 1),
python_platform=get_python_platform(),
is_cuda_available=cuda_available_str,
cuda_compiled_version=cuda_version_str,
cuda_runtime_version=get_running_cuda_version(run_lambda),
cuda_module_loading=get_cuda_module_loading_config(),
nvidia_gpu_models=get_gpu_info(run_lambda),
nvidia_driver_version=get_nvidia_driver_version(run_lambda),
cudnn_version=get_cudnn_version(run_lambda),
hip_compiled_version=hip_compiled_version,
hip_runtime_version=hip_runtime_version,
miopen_runtime_version=miopen_runtime_version,
pip_version=pip_version,
pip_packages=pip_list_output,
conda_packages=conda_packages,
os=get_os(run_lambda),
libc_version=get_libc_version(),
gcc_version=get_gcc_version(run_lambda),
clang_version=get_clang_version(run_lambda),
cmake_version=get_cmake_version(run_lambda),
caching_allocator_config=get_cachingallocator_config(),
is_xnnpack_available=is_xnnpack_available(),
cpu_info=get_cpu_info(run_lambda),
rocm_version=rocm_version,
neuron_sdk_version=neuron_sdk_version,
vllm_version=vllm_version,
vllm_build_flags=vllm_build_flags,
gpu_topo=gpu_topo,
)
env_info_fmt = """
PyTorch version: {torch_version}
Is debug build: {is_debug_build}
CUDA used to build PyTorch: {cuda_compiled_version}
ROCM used to build PyTorch: {hip_compiled_version}
OS: {os}
GCC version: {gcc_version}
Clang version: {clang_version}
CMake version: {cmake_version}
Libc version: {libc_version}
Python version: {python_version}
Python platform: {python_platform}
Is CUDA available: {is_cuda_available}
CUDA runtime version: {cuda_runtime_version}
CUDA_MODULE_LOADING set to: {cuda_module_loading}
GPU models and configuration: {nvidia_gpu_models}
Nvidia driver version: {nvidia_driver_version}
cuDNN version: {cudnn_version}
HIP runtime version: {hip_runtime_version}
MIOpen runtime version: {miopen_runtime_version}
Is XNNPACK available: {is_xnnpack_available}
CPU:
{cpu_info}
Versions of relevant libraries:
{pip_packages}
{conda_packages}
""".strip()
env_info_fmt += """
ROCM Version: {rocm_version}
Neuron SDK Version: {neuron_sdk_version}
vLLM Version: {vllm_version}
vLLM Build Flags:
{vllm_build_flags}
GPU Topology:
{gpu_topo}
""".strip()
def pretty_str(envinfo):
def replace_nones(dct, replacement='Could not collect'):
for key in dct.keys():
if dct[key] is not None:
continue
dct[key] = replacement
return dct
def replace_bools(dct, true='Yes', false='No'):
for key in dct.keys():
if dct[key] is True:
dct[key] = true
elif dct[key] is False:
dct[key] = false
return dct
def prepend(text, tag='[prepend]'):
lines = text.split('\n')
updated_lines = [tag + line for line in lines]
return '\n'.join(updated_lines)
def replace_if_empty(text, replacement='No relevant packages'):
if text is not None and len(text) == 0:
return replacement
return text
def maybe_start_on_next_line(string):
# If `string` is multiline, prepend a \n to it.
if string is not None and len(string.split('\n')) > 1:
return '\n{}\n'.format(string)
return string
mutable_dict = envinfo._asdict()
# If nvidia_gpu_models is multiline, start on the next line
mutable_dict['nvidia_gpu_models'] = \
maybe_start_on_next_line(envinfo.nvidia_gpu_models)
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
dynamic_cuda_fields = [
'cuda_runtime_version',
'nvidia_gpu_models',
'nvidia_driver_version',
]
all_cuda_fields = dynamic_cuda_fields + ['cudnn_version']
all_dynamic_cuda_fields_missing = all(
mutable_dict[field] is None for field in dynamic_cuda_fields)
if TORCH_AVAILABLE and not torch.cuda.is_available() and all_dynamic_cuda_fields_missing:
for field in all_cuda_fields:
mutable_dict[field] = 'No CUDA'
if envinfo.cuda_compiled_version is None:
mutable_dict['cuda_compiled_version'] = 'None'
# Replace True with Yes, False with No
mutable_dict = replace_bools(mutable_dict)
# Replace all None objects with 'Could not collect'
mutable_dict = replace_nones(mutable_dict)
# If either of these are '', replace with 'No relevant packages'
mutable_dict['pip_packages'] = replace_if_empty(mutable_dict['pip_packages'])
mutable_dict['conda_packages'] = replace_if_empty(mutable_dict['conda_packages'])
# Tag conda and pip packages with a prefix
# If they were previously None, they'll show up as ie '[conda] Could not collect'
if mutable_dict['pip_packages']:
mutable_dict['pip_packages'] = prepend(mutable_dict['pip_packages'],
'[{}] '.format(envinfo.pip_version))
if mutable_dict['conda_packages']:
mutable_dict['conda_packages'] = prepend(mutable_dict['conda_packages'],
'[conda] ')
mutable_dict['cpu_info'] = envinfo.cpu_info
return env_info_fmt.format(**mutable_dict)
def get_pretty_env_info():
return pretty_str(get_env_info())
def main():
print("Collecting environment information...")
output = get_pretty_env_info()
print(output)
if TORCH_AVAILABLE and hasattr(torch, 'utils') and hasattr(torch.utils, '_crash_handler'):
minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
if sys.platform == "linux" and os.path.exists(minidump_dir):
dumps = [os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir)]
latest = max(dumps, key=os.path.getctime)
ctime = os.path.getctime(latest)
creation_time = datetime.datetime.fromtimestamp(ctime).strftime('%Y-%m-%d %H:%M:%S')
msg = "\n*** Detected a minidump at {} created on {}, ".format(latest, creation_time) + \
"if this is related to your bug please include it when you file a report ***"
print(msg, file=sys.stderr)
if __name__ == '__main__':
main()