[Misc] Remove Gemma RoPE (#7638)

This commit is contained in:
Woosuk Kwon 2024-08-19 09:29:31 -07:00 committed by GitHub
parent 1a36287b89
commit df845b2b46
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 7 additions and 26 deletions

View File

@ -93,11 +93,6 @@ class RotaryEmbedding(CustomOp):
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
"""Compute the inverse frequency."""
# NOTE(woosuk): The HF implementation uses `torch.arange(...).float()`.
# However, we use `torch.arange(..., dtype=torch.float)` instead to
# avoid numerical issues with large base values (e.g., 10000000).
# This may cause a slight numerical difference between the HF
# implementation and ours.
# NOTE(woosuk): To exactly match the HF implementation, we need to
# use CPU to compute the cache and then move it to GPU. However, we
# create the cache on GPU for faster initialization. This may cause
@ -724,16 +719,6 @@ class DeepseekScalingRotaryEmbedding(RotaryEmbedding):
return query, key
class GemmaRotaryEmbedding(RotaryEmbedding):
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
# https://github.com/huggingface/transformers/blob/v4.41.2/src/transformers/models/gemma/modeling_gemma.py#L107
inv_freq = 1.0 / (base**(
torch.arange(0, self.rotary_dim, 2, dtype=torch.int64).float() /
self.rotary_dim))
return inv_freq
class Llama3RotaryEmbedding(RotaryEmbedding):
def __init__(

View File

@ -33,7 +33,7 @@ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.rotary_embedding import GemmaRotaryEmbedding
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
@ -148,14 +148,12 @@ class GemmaAttention(nn.Module):
quant_config=quant_config,
)
# TODO(woosuk): Use the `get_rope` interface.
self.rotary_emb = GemmaRotaryEmbedding(
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position_embeddings=max_position_embeddings,
max_position=max_position_embeddings,
base=self.rope_theta,
is_neox_style=True,
dtype=torch.get_default_dtype(),
)
self.attn = Attention(self.num_heads,
self.head_dim,

View File

@ -32,7 +32,7 @@ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.rotary_embedding import GemmaRotaryEmbedding
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
@ -130,14 +130,12 @@ class Gemma2Attention(nn.Module):
bias=config.attention_bias,
quant_config=quant_config,
)
# TODO(woosuk): Use the `get_rope` interface.
self.rotary_emb = GemmaRotaryEmbedding(
self.rotary_emb = get_rope(
self.head_dim,
self.head_dim,
max_position_embeddings,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=self.rope_theta,
is_neox_style=True,
dtype=torch.get_default_dtype(),
)
# FIXME(woosuk): While Gemma 2 uses sliding window attention for every