[Misc] Remove Gemma RoPE (#7638)
This commit is contained in:
parent
1a36287b89
commit
df845b2b46
@ -93,11 +93,6 @@ class RotaryEmbedding(CustomOp):
|
||||
|
||||
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
|
||||
"""Compute the inverse frequency."""
|
||||
# NOTE(woosuk): The HF implementation uses `torch.arange(...).float()`.
|
||||
# However, we use `torch.arange(..., dtype=torch.float)` instead to
|
||||
# avoid numerical issues with large base values (e.g., 10000000).
|
||||
# This may cause a slight numerical difference between the HF
|
||||
# implementation and ours.
|
||||
# NOTE(woosuk): To exactly match the HF implementation, we need to
|
||||
# use CPU to compute the cache and then move it to GPU. However, we
|
||||
# create the cache on GPU for faster initialization. This may cause
|
||||
@ -724,16 +719,6 @@ class DeepseekScalingRotaryEmbedding(RotaryEmbedding):
|
||||
return query, key
|
||||
|
||||
|
||||
class GemmaRotaryEmbedding(RotaryEmbedding):
|
||||
|
||||
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
|
||||
# https://github.com/huggingface/transformers/blob/v4.41.2/src/transformers/models/gemma/modeling_gemma.py#L107
|
||||
inv_freq = 1.0 / (base**(
|
||||
torch.arange(0, self.rotary_dim, 2, dtype=torch.int64).float() /
|
||||
self.rotary_dim))
|
||||
return inv_freq
|
||||
|
||||
|
||||
class Llama3RotaryEmbedding(RotaryEmbedding):
|
||||
|
||||
def __init__(
|
||||
|
@ -33,7 +33,7 @@ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
from vllm.model_executor.layers.rotary_embedding import GemmaRotaryEmbedding
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
@ -148,14 +148,12 @@ class GemmaAttention(nn.Module):
|
||||
quant_config=quant_config,
|
||||
)
|
||||
|
||||
# TODO(woosuk): Use the `get_rope` interface.
|
||||
self.rotary_emb = GemmaRotaryEmbedding(
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
max_position=max_position_embeddings,
|
||||
base=self.rope_theta,
|
||||
is_neox_style=True,
|
||||
dtype=torch.get_default_dtype(),
|
||||
)
|
||||
self.attn = Attention(self.num_heads,
|
||||
self.head_dim,
|
||||
|
@ -32,7 +32,7 @@ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
from vllm.model_executor.layers.rotary_embedding import GemmaRotaryEmbedding
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding)
|
||||
@ -130,14 +130,12 @@ class Gemma2Attention(nn.Module):
|
||||
bias=config.attention_bias,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
# TODO(woosuk): Use the `get_rope` interface.
|
||||
self.rotary_emb = GemmaRotaryEmbedding(
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
self.head_dim,
|
||||
max_position_embeddings,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=self.rope_theta,
|
||||
is_neox_style=True,
|
||||
dtype=torch.get_default_dtype(),
|
||||
)
|
||||
|
||||
# FIXME(woosuk): While Gemma 2 uses sliding window attention for every
|
||||
|
Loading…
x
Reference in New Issue
Block a user