[Model] Fix Phi-3.5-vision-instruct 'num_crops' issue (#7710)

This commit is contained in:
zifeitong 2024-08-21 18:36:24 -07:00 committed by GitHub
parent 7937009a7e
commit df1a21131d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 37 additions and 13 deletions

View File

@ -225,9 +225,9 @@ Multimodal Language Models
- :code:`google/paligemma-3b-pt-224`, :code:`google/paligemma-3b-mix-224`, etc. - :code:`google/paligemma-3b-pt-224`, :code:`google/paligemma-3b-mix-224`, etc.
- -
* - :code:`Phi3VForCausalLM` * - :code:`Phi3VForCausalLM`
- Phi-3-Vision - Phi-3-Vision, Phi-3.5-Vision
- Image - Image
- :code:`microsoft/Phi-3-vision-128k-instruct`, etc. - :code:`microsoft/Phi-3-vision-128k-instruct`, :code:`microsoft/Phi-3.5-vision-instruct` etc.
- -
* - :code:`MiniCPMV` * - :code:`MiniCPMV`
- MiniCPM-V - MiniCPM-V

View File

@ -21,7 +21,7 @@ HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n", "<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n",
}) })
models = ["microsoft/Phi-3-vision-128k-instruct"] models = ["microsoft/Phi-3.5-vision-instruct"]
def vllm_to_hf_output(vllm_output: Tuple[List[int], str, def vllm_to_hf_output(vllm_output: Tuple[List[int], str,

View File

@ -13,7 +13,9 @@ from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.model_executor.models import ModelRegistry from vllm.model_executor.models import ModelRegistry
from vllm.platforms import current_platform from vllm.platforms import current_platform
from vllm.tracing import is_otel_available, otel_import_error_traceback from vllm.tracing import is_otel_available, otel_import_error_traceback
from vllm.transformers_utils.config import get_config, get_hf_text_config from vllm.transformers_utils.config import (get_config,
get_hf_image_processor_config,
get_hf_text_config)
from vllm.utils import (STR_NOT_IMPL_ENC_DEC_CUDAGRAPH, GiB_bytes, from vllm.utils import (STR_NOT_IMPL_ENC_DEC_CUDAGRAPH, GiB_bytes,
cuda_device_count_stateless, get_cpu_memory, is_cpu, cuda_device_count_stateless, get_cpu_memory, is_cpu,
is_hip, is_neuron, is_openvino, is_xpu, is_hip, is_neuron, is_openvino, is_xpu,
@ -167,6 +169,8 @@ class ModelConfig:
self.hf_config = get_config(self.model, trust_remote_code, revision, self.hf_config = get_config(self.model, trust_remote_code, revision,
code_revision, rope_scaling, rope_theta) code_revision, rope_scaling, rope_theta)
self.hf_text_config = get_hf_text_config(self.hf_config) self.hf_text_config = get_hf_text_config(self.hf_config)
self.hf_image_processor_config = get_hf_image_processor_config(
self.model, revision)
self.dtype = _get_and_verify_dtype(self.hf_text_config, dtype) self.dtype = _get_and_verify_dtype(self.hf_text_config, dtype)
# Choose a default enforce_eager value if the user did not specify # Choose a default enforce_eager value if the user did not specify

View File

@ -2,8 +2,8 @@ import functools
from array import array from array import array
from collections import UserDict from collections import UserDict
from dataclasses import dataclass from dataclasses import dataclass
from typing import (TYPE_CHECKING, Callable, Dict, Mapping, Optional, Protocol, from typing import (TYPE_CHECKING, Any, Callable, Dict, Mapping, Optional,
Tuple, Type) Protocol, Tuple, Type)
from torch import nn from torch import nn
from transformers import PretrainedConfig from transformers import PretrainedConfig
@ -55,6 +55,13 @@ class InputContext:
return hf_config return hf_config
def get_hf_image_processor_config(self) -> Dict[str, Any]:
"""
Get the HuggingFace image processor configuration of the model.
"""
return self.model_config.hf_image_processor_config
N = TypeVar("N", bound=Type[nn.Module]) N = TypeVar("N", bound=Type[nn.Module])

View File

@ -15,8 +15,8 @@
# limitations under the License. # limitations under the License.
import re import re
from functools import lru_cache from functools import lru_cache
from typing import (Iterable, List, Literal, Mapping, Optional, Tuple, from typing import (Any, Dict, Iterable, List, Literal, Mapping, Optional,
TypedDict, Union) Tuple, TypedDict, Union)
import numpy as np import numpy as np
import torch import torch
@ -324,12 +324,12 @@ def _calc_hd_transform_size(*, width: int, height: int, hd_num: int = 16):
# Based on https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/image_processing_phi3_v.py#L181 # Based on https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/image_processing_phi3_v.py#L181
def get_phi3v_image_feature_size( def get_phi3v_image_feature_size(
hf_config: PretrainedConfig, hf_config: Dict[str, Any],
*, *,
input_height: int, input_height: int,
input_width: int, input_width: int,
) -> int: ) -> int:
num_crops = getattr(hf_config, "num_crops", 16) num_crops = hf_config.get("num_crops", 16)
new_width, new_height = _calc_hd_transform_size(width=input_width, new_width, new_height = _calc_hd_transform_size(width=input_width,
height=input_height, height=input_height,
hd_num=num_crops) hd_num=num_crops)
@ -341,7 +341,7 @@ def get_phi3v_image_feature_size(
def get_max_phi3v_image_tokens(ctx: InputContext): def get_max_phi3v_image_tokens(ctx: InputContext):
return get_phi3v_image_feature_size( return get_phi3v_image_feature_size(
ctx.get_hf_config(), ctx.get_hf_image_processor_config(),
input_height=MAX_IMAGE_FEATURE_SIZE_HEIGHT, input_height=MAX_IMAGE_FEATURE_SIZE_HEIGHT,
input_width=MAX_IMAGE_FEATURE_SIZE_WIDTH, input_width=MAX_IMAGE_FEATURE_SIZE_WIDTH,
) )
@ -395,7 +395,7 @@ def input_processor_for_phi3v(ctx: InputContext, llm_inputs: LLMInputs):
return llm_inputs return llm_inputs
model_config = ctx.model_config model_config = ctx.model_config
hf_config = ctx.get_hf_config() hf_config = ctx.get_hf_image_processor_config()
image_data = multi_modal_data["image"] image_data = multi_modal_data["image"]
if isinstance(image_data, Image.Image): if isinstance(image_data, Image.Image):

View File

@ -1,8 +1,10 @@
import contextlib import contextlib
from pathlib import Path from pathlib import Path
from typing import Dict, Optional, Type, Union from typing import Any, Dict, Optional, Type, Union
from transformers import GenerationConfig, PretrainedConfig from transformers import GenerationConfig, PretrainedConfig
from transformers.models.auto.image_processing_auto import (
get_image_processor_config)
from transformers.models.auto.modeling_auto import ( from transformers.models.auto.modeling_auto import (
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
@ -98,6 +100,17 @@ def get_config(
return config return config
def get_hf_image_processor_config(
model: Union[str, Path],
revision: Optional[str] = None,
**kwargs,
) -> Dict[str, Any]:
# Separate model folder from file path for GGUF models
if Path(model).is_file() and Path(model).suffix == ".gguf":
model = Path(model).parent
return get_image_processor_config(model, revision=revision, **kwargs)
def get_hf_text_config(config: PretrainedConfig): def get_hf_text_config(config: PretrainedConfig):
"""Get the "sub" config relevant to llm for multi modal models. """Get the "sub" config relevant to llm for multi modal models.
No op for pure text models. No op for pure text models.