[VLM] Clean up Phi-4-MM ViT implementation (#14812)

Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
This commit is contained in:
Isotr0py 2025-03-16 09:53:52 +08:00 committed by GitHub
parent 3453b964a3
commit def232e122
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 316 additions and 1988 deletions

View File

@ -8,6 +8,7 @@ pytest-shard
# testing utils
awscli
backoff # required for phi4mm test
decord # required for video tests
einops # required for MPT, qwen-vl and Mamba
httpx

View File

@ -33,6 +33,8 @@ audioread==3.0.1
# via librosa
awscli==1.35.23
# via -r requirements/test.in
backoff==2.2.1
# via -r requirements/test.in
bitsandbytes==0.45.3
# via -r requirements/test.in
black==24.10.0

View File

@ -0,0 +1,229 @@
# SPDX-License-Identifier: Apache-2.0
import os
import re
from typing import Optional
import pytest
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer
from vllm.lora.request import LoRARequest
from vllm.multimodal.image import rescale_image_size
from vllm.platforms import current_platform
from vllm.sequence import SampleLogprobs
from ....conftest import IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner
from ....utils import large_gpu_test
from ...utils import check_logprobs_close
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"stop_sign":
"<|user|>\n<|image_1|>\nWhat's the content of the image?<|end|>\n<|assistant|>\n", # noqa: E501
"cherry_blossom":
"<|user|>\n<|image_1|>\nPlease infer the season with reason in details.<|end|>\n<|assistant|>\n", # noqa: E501
})
HF_MULTIIMAGE_IMAGE_PROMPT = "<|user|>\n<|image_1|>\n<|image_2|>\nDescribe these images.<|end|>\n<|assistant|>\n" # noqa: E501
model_path = snapshot_download("microsoft/Phi-4-multimodal-instruct")
# Since the vision-lora and speech-lora co-exist with the base model,
# we have to manually specify the path of the lora weights.
vision_lora_path = os.path.join(model_path, "vision-lora")
models = [model_path]
def vllm_to_hf_output(vllm_output: tuple[list[int], str,
Optional[SampleLogprobs]],
model: str):
"""Sanitize vllm output to be comparable with hf output."""
_, output_str, out_logprobs = vllm_output
output_str_without_image = re.sub(r"(<\|image_\d+\|>)+", "", output_str)
assert output_str_without_image[0] == " "
output_str_without_image = output_str_without_image[1:]
hf_output_str = output_str_without_image + "<|end|><|endoftext|>"
tokenizer = AutoTokenizer.from_pretrained(model)
hf_output_ids = tokenizer.encode(output_str_without_image)
assert hf_output_ids[0] == 1
hf_output_ids = hf_output_ids[1:]
return hf_output_ids, hf_output_str, out_logprobs
target_dtype = "half"
# ROCm Triton FA can run into shared memory issues with these models,
# use other backends in the meantime
# FIXME (mattwong, gshtrasb, hongxiayan)
if current_platform.is_rocm():
os.environ["VLLM_USE_TRITON_FLASH_ATTN"] = "0"
def run_test(
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
inputs: list[tuple[list[str], PromptImageInput]],
model: str,
*,
max_model_len: int,
dtype: str,
max_tokens: int,
num_logprobs: int,
mm_limit: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
):
"""Inference result should be the same between hf and vllm.
All the image fixtures for the test are from IMAGE_ASSETS.
For huggingface runner, we provide the PIL images as input.
For vllm runner, we provide MultiModalDataDict objects
and corresponding MultiModalConfig as input.
Note, the text input is also adjusted to abide by vllm contract.
The text output is sanitized to be able to compare with hf.
"""
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).
# max_model_len should be greater than image_feature_size
with vllm_runner(
model,
task="generate",
max_model_len=max_model_len,
max_num_seqs=2,
dtype=dtype,
limit_mm_per_prompt={"image": mm_limit},
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enable_lora=True,
max_lora_rank=320,
lora_extra_vocab_size=0,
gpu_memory_utilization=0.8, # set to 0.8 to avoid OOM in CI
enforce_eager=True,
) as vllm_model:
lora_request = LoRARequest("vision", 1, vision_lora_path)
vllm_model.model.llm_engine.add_lora(lora_request=lora_request)
vllm_outputs_per_case = [
vllm_model.generate_greedy_logprobs(prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images)
for prompts, images in inputs
]
# use eager mode for hf runner, since phi3_v didn't work with flash_attn
hf_model_kwargs = {"_attn_implementation": "eager"}
with hf_runner(model, dtype=dtype,
model_kwargs=hf_model_kwargs) as hf_model:
eos_token_id = hf_model.processor.tokenizer.eos_token_id
hf_outputs_per_case = [
hf_model.generate_greedy_logprobs_limit(prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images,
eos_token_id=eos_token_id,
num_logits_to_keep=0)
for prompts, images in inputs
]
for hf_outputs, vllm_outputs in zip(hf_outputs_per_case,
vllm_outputs_per_case):
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
# Since we use _attn_implementation="eager" for hf_runner, there is more
# significant numerical difference. The basic `logprobs=5` fails to pass.
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# No image
[],
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.7, 0.75, 1.0],
],
)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_model_len", [4096])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_models(hf_runner, vllm_runner, image_assets, model, size_factors,
dtype: str, max_model_len: int, max_tokens: int,
num_logprobs: int) -> None:
images = [asset.pil_image for asset in image_assets]
inputs_per_image = [(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
run_test(
hf_runner,
vllm_runner,
inputs_per_image,
model,
dtype=dtype,
max_model_len=max_model_len,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=1,
tensor_parallel_size=1,
)
@large_gpu_test(min_gb=48)
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# No image
# [],
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.25, 0.5, 1.0],
],
)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_model_len", [10000])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
@pytest.mark.xfail(
reason="Phi-4-MM multi-image inference is divergent with hf model.")
def test_multi_images_models(hf_runner, vllm_runner, image_assets, model,
size_factors, dtype: str, max_model_len: int,
max_tokens: int, num_logprobs: int) -> None:
images = [asset.pil_image for asset in image_assets]
inputs_per_case = [
([HF_MULTIIMAGE_IMAGE_PROMPT for _ in size_factors],
[[rescale_image_size(image, factor) for image in images]
for factor in size_factors])
]
run_test(
hf_runner,
vllm_runner,
inputs_per_case,
model,
dtype=dtype,
max_model_len=max_model_len,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=2,
tensor_parallel_size=1,
)

View File

@ -60,7 +60,7 @@ class AriaVisionTransformer(Idefics3VisionTransformer, SupportsQuant):
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(config, quant_config, prefix)
super().__init__(config, quant_config=quant_config, prefix=prefix)
# Unlike Idefics3VisionTransformer which uses LayerNorm after the
# final layer, Aria omits this normalization, so we replace it with an
# Identity layer
@ -512,7 +512,7 @@ class AriaForConditionalGeneration(nn.Module, SupportsMultiModal):
self.config = config
self.vision_tower = AriaVisionTransformer(
config.vision_config,
quant_config,
quant_config=quant_config,
prefix=f"{prefix}.vision_tower",
)
self.multi_modal_projector = AriaProjector(config)

View File

@ -113,7 +113,7 @@ class Idefics2VisionAttention(nn.Module):
def __init__(
self,
config: Idefics2Config,
config: Idefics2VisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
@ -164,7 +164,7 @@ class Idefics2VisionMLP(nn.Module):
def __init__(
self,
config: Idefics2Config,
config: Idefics2VisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
@ -249,16 +249,24 @@ class Idefics2Encoder(nn.Module):
self,
config: Idefics2Config,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
if num_hidden_layers_override is None:
num_hidden_layers = config.num_hidden_layers
else:
num_hidden_layers = num_hidden_layers_override
self.layers = nn.ModuleList([
Idefics2EncoderLayer(config,
quant_config=quant_config,
prefix=f"{prefix}.layers.{layer_idx}")
for layer_idx in range(config.num_hidden_layers)
for layer_idx in range(num_hidden_layers)
])
def forward(
@ -287,6 +295,9 @@ class Idefics2VisionTransformer(nn.Module):
self,
config: Idefics2VisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
require_post_norm: bool = True,
prefix: str = "",
) -> None:
super().__init__()
@ -294,11 +305,24 @@ class Idefics2VisionTransformer(nn.Module):
embed_dim = config.hidden_size
self.config = config
self.embeddings = Idefics2VisionEmbeddings(config)
self.encoder = Idefics2Encoder(config,
quant_config=quant_config,
prefix=f"{prefix}.encoder")
self.post_layernorm = nn.LayerNorm(embed_dim,
eps=config.layer_norm_eps)
self.encoder = Idefics2Encoder(
config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
prefix=f"{prefix}.encoder")
num_hidden_layers = config.num_hidden_layers
if len(self.encoder.layers) > config.num_hidden_layers:
raise ValueError(
f"The original encoder only has {num_hidden_layers} "
f"layers, but you requested {len(self.encoder.layers)} layers."
)
self.require_post_norm = require_post_norm
self.post_layernorm = nn.LayerNorm(
embed_dim,
eps=config.layer_norm_eps,
) if require_post_norm else nn.Identity()
def get_input_embeddings(self):
return self.embeddings
@ -328,7 +352,24 @@ class Idefics2VisionTransformer(nn.Module):
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
layer_count = len(self.encoder.layers)
for name, loaded_weight in weights:
# skip pooling header
if name.startswith("head."):
continue
# post_layernorm is optional
if (name.startswith("post_layernorm.")
and not self.require_post_norm):
continue
# omit layers when num_hidden_layers_override is set
if name.startswith("encoder.layers."):
layer_idx = int(name.split(".")[2])
if layer_idx >= layer_count:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue

View File

@ -11,7 +11,7 @@ import torch
import torch.nn as nn
import torchvision.transforms as T
from PIL import Image
from transformers import PretrainedConfig
from transformers import PretrainedConfig, SiglipVisionConfig
from transformers.utils import logging
from vllm.config import VllmConfig
@ -32,10 +32,10 @@ from vllm.multimodal.inputs import MultiModalInputs, NestedTensors
from vllm.sequence import IntermediateTensors, SequenceData
from vllm.transformers_utils.tokenizer import cached_tokenizer_from_config
from .idefics2_vision_model import Idefics2VisionTransformer
from .interfaces import SupportsLoRA, SupportsMultiModal
from .phi4mm_audio import AudioEmbedding
from .utils import AutoWeightsLoader, WeightsMapper, maybe_prefix
from .vision_siglip_navit import get_siglip_vision_model
# <|endoftext10|> (see vocab.json in hf model)
_IMAGE_PLACEHOLDER_TOKEN_ID = 200010
@ -339,6 +339,33 @@ def preprocess(images, dynamic_hd_size, vit_resolution, vit_patch_size):
return data
def get_navit_vision_model(layer_idx: int = -1, **kwargs):
vision_config = {
"hidden_size": 1152,
"image_size": 448,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14,
}
model_config = SiglipVisionConfig(**vision_config, **kwargs)
if layer_idx < 0:
num_hidden_layers = model_config.num_hidden_layers \
+ layer_idx + 1
else:
num_hidden_layers = layer_idx + 1
vision_model = Idefics2VisionTransformer(
config=model_config,
require_post_norm=False,
num_hidden_layers_override=num_hidden_layers,
)
return vision_model
class Phi4MMImageEncoder(nn.Module):
"""Image embedding."""
@ -362,8 +389,7 @@ class Phi4MMImageEncoder(nn.Module):
self.layer_idx = -2
self.type_feature = 'patch'
self.img_processor = get_siglip_vision_model(
_flash_attn_2_enabled=True)
self.img_processor = get_navit_vision_model(layer_idx=self.layer_idx)
pe_weight = self.img_processor.embeddings.position_embedding.weight
L, D = pe_weight.size()
@ -430,16 +456,11 @@ class Phi4MMImageEncoder(nn.Module):
def get_img_features(self,
img_embeds: torch.FloatTensor,
attention_mask=None) -> torch.FloatTensor:
LAYER_IDX = self.layer_idx
TYPE_FEATURE = self.type_feature
img_processor_output = self.img_processor(
img_embeds,
output_hidden_states=True,
patch_attention_mask=attention_mask)
img_feature = img_processor_output.hidden_states[LAYER_IDX]
img_feature = self.img_processor(img_embeds,
patch_attention_mask=attention_mask)
if TYPE_FEATURE == "patch":
if self.type_feature == "patch":
patch_feature = img_feature
use_token_compression = self.image_token_compression is not None

File diff suppressed because it is too large Load Diff