[Kernel] Add ModelOpt FP4 Checkpoint Support (#12520)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
This commit is contained in:
parent
5c538c37b2
commit
debd6bbf09
@ -160,14 +160,16 @@ torch::Tensor ggml_moe_a8(torch::Tensor X, torch::Tensor W,
|
|||||||
int64_t ggml_moe_get_block_size(int64_t type);
|
int64_t ggml_moe_get_block_size(int64_t type);
|
||||||
|
|
||||||
#ifndef USE_ROCM
|
#ifndef USE_ROCM
|
||||||
|
|
||||||
|
bool cutlass_scaled_mm_supports_fp4(int64_t cuda_device_capability);
|
||||||
|
bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability);
|
||||||
|
bool cutlass_scaled_mm_supports_block_fp8(int64_t cuda_device_capability);
|
||||||
|
|
||||||
void cutlass_scaled_fp4_mm(torch::Tensor& D, torch::Tensor const& A,
|
void cutlass_scaled_fp4_mm(torch::Tensor& D, torch::Tensor const& A,
|
||||||
torch::Tensor const& B, torch::Tensor const& A_sf,
|
torch::Tensor const& B, torch::Tensor const& A_sf,
|
||||||
torch::Tensor const& B_sf,
|
torch::Tensor const& B_sf,
|
||||||
torch::Tensor const& alpha);
|
torch::Tensor const& alpha);
|
||||||
|
|
||||||
bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability);
|
|
||||||
bool cutlass_scaled_mm_supports_block_fp8(int64_t cuda_device_capability);
|
|
||||||
|
|
||||||
void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a,
|
void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a,
|
||||||
torch::Tensor const& b, torch::Tensor const& a_scales,
|
torch::Tensor const& b, torch::Tensor const& a_scales,
|
||||||
torch::Tensor const& b_scales,
|
torch::Tensor const& b_scales,
|
||||||
|
@ -36,3 +36,9 @@ void cutlass_scaled_fp4_mm(torch::Tensor& D, torch::Tensor const& A,
|
|||||||
"be compiled using CUDA 12.8 and target "
|
"be compiled using CUDA 12.8 and target "
|
||||||
"compute capability 100 or above.");
|
"compute capability 100 or above.");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool cutlass_scaled_mm_supports_fp4(int64_t cuda_device_capability) {
|
||||||
|
int runtimeVersion;
|
||||||
|
cudaRuntimeGetVersion(&runtimeVersion);
|
||||||
|
return cuda_device_capability >= 100 && runtimeVersion >= 12080;
|
||||||
|
}
|
@ -201,10 +201,11 @@ void runGemm(at::Tensor& D, at::Tensor const& A, at::Tensor const& B,
|
|||||||
#endif // defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
|
#endif // defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
|
||||||
|
|
||||||
#define CHECK_TYPE(x, st, m) \
|
#define CHECK_TYPE(x, st, m) \
|
||||||
TORCH_CHECK(x.scalar_type() == st, "Inconsistency of Tensor type:", m)
|
TORCH_CHECK(x.scalar_type() == st, ": Inconsistency of Tensor type:", m)
|
||||||
#define CHECK_TH_CUDA(x, m) TORCH_CHECK(x.is_cuda(), m, "must be a CUDA tensor")
|
#define CHECK_TH_CUDA(x, m) \
|
||||||
|
TORCH_CHECK(x.is_cuda(), m, ": must be a CUDA tensor")
|
||||||
#define CHECK_CONTIGUOUS(x, m) \
|
#define CHECK_CONTIGUOUS(x, m) \
|
||||||
TORCH_CHECK(x.is_contiguous(), m, "must be contiguous")
|
TORCH_CHECK(x.is_contiguous(), m, ": must be contiguous")
|
||||||
#define CHECK_INPUT(x, st, m) \
|
#define CHECK_INPUT(x, st, m) \
|
||||||
CHECK_TH_CUDA(x, m); \
|
CHECK_TH_CUDA(x, m); \
|
||||||
CHECK_CONTIGUOUS(x, m); \
|
CHECK_CONTIGUOUS(x, m); \
|
||||||
|
@ -434,6 +434,10 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
|||||||
" Tensor! output_scale, Tensor input_scale) -> ()");
|
" Tensor! output_scale, Tensor input_scale) -> ()");
|
||||||
ops.impl("scaled_fp4_quant", torch::kCUDA, &scaled_fp4_quant);
|
ops.impl("scaled_fp4_quant", torch::kCUDA, &scaled_fp4_quant);
|
||||||
|
|
||||||
|
// Check if cutlass_scaled_mm_fp4 is supported for CUDA devices
|
||||||
|
// of the given capability
|
||||||
|
ops.def("cutlass_scaled_mm_supports_fp4(int cuda_device_capability) -> bool");
|
||||||
|
ops.impl("cutlass_scaled_mm_supports_fp4", &cutlass_scaled_mm_supports_fp4);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Quantized GEMM for GPTQ.
|
// Quantized GEMM for GPTQ.
|
||||||
|
82
tests/models/decoder_only/language/test_nvfp4.py
Normal file
82
tests/models/decoder_only/language/test_nvfp4.py
Normal file
@ -0,0 +1,82 @@
|
|||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
# flake8: noqa
|
||||||
|
"""Tests Model Optimizer nvfp4 models against ground truth generation
|
||||||
|
Note: these tests will only pass on B200
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
from tests.quantization.utils import is_quant_method_supported
|
||||||
|
from vllm import LLM, SamplingParams
|
||||||
|
|
||||||
|
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
||||||
|
|
||||||
|
MAX_MODEL_LEN = 1024
|
||||||
|
|
||||||
|
MODELS = ["nvidia/Llama-3.3-70B-Instruct-FP4"]
|
||||||
|
|
||||||
|
EXPECTED_STRS_MAP = {
|
||||||
|
"nvidia/Llama-3.3-70B-Instruct-FP4": [
|
||||||
|
'vLLM (Vectorized Large Language Model) is indeed a high-throughput and memory-efficient inference',
|
||||||
|
'Here are the major milestones in the development of artificial intelligence (AI) from 1950 to ',
|
||||||
|
'Artificial intelligence (AI) and human intelligence (HI) are two distinct forms of intelligence that process',
|
||||||
|
'A neural network is a type of machine learning model inspired by the structure and function of the human brain',
|
||||||
|
'In the heart of a cutting-edge robotics lab, a team of engineers had been working tirelessly to push',
|
||||||
|
'The COVID-19 pandemic has had a profound impact on global economic structures and future business models, leading',
|
||||||
|
'The Mona Lisa, painted by Leonardo da Vinci in the early 16th century, is one of',
|
||||||
|
'Here are the translations:\n\n* Japanese: (Sasuga no tori ga miwa o ts'
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# This test compares against golden strings for exact match since
|
||||||
|
# there is no baseline implementation to compare against
|
||||||
|
# and is unstable w.r.t specifics of the fp4 implementation or
|
||||||
|
# the hardware being run on.
|
||||||
|
# Disabled to prevent it from breaking the build
|
||||||
|
@pytest.mark.skip(
|
||||||
|
reason=
|
||||||
|
"Prevent unstable test based on golden strings from breaking the build "
|
||||||
|
" and test input model being too large and hanging the system.")
|
||||||
|
@pytest.mark.quant_model
|
||||||
|
@pytest.mark.skipif(not is_quant_method_supported("nvfp4"),
|
||||||
|
reason="nvfp4 is not supported on this GPU type.")
|
||||||
|
@pytest.mark.parametrize("model_name", MODELS)
|
||||||
|
def test_models(example_prompts, model_name) -> None:
|
||||||
|
model = LLM(
|
||||||
|
model=model_name,
|
||||||
|
max_model_len=MAX_MODEL_LEN,
|
||||||
|
trust_remote_code=True,
|
||||||
|
enforce_eager=True,
|
||||||
|
quantization="nvfp4",
|
||||||
|
)
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
|
formatted_prompts = [
|
||||||
|
tokenizer.apply_chat_template([{
|
||||||
|
"role": "user",
|
||||||
|
"content": prompt
|
||||||
|
}],
|
||||||
|
tokenize=False,
|
||||||
|
add_generation_prompt=True)
|
||||||
|
for prompt in example_prompts
|
||||||
|
]
|
||||||
|
params = SamplingParams(max_tokens=20, temperature=0)
|
||||||
|
generations: List[str] = []
|
||||||
|
# Note: these need to be run 1 at a time due to numerical precision,
|
||||||
|
# since the expected strs were generated this way.
|
||||||
|
for prompt in formatted_prompts:
|
||||||
|
outputs = model.generate(prompt, params)
|
||||||
|
generations.append(outputs[0].outputs[0].text)
|
||||||
|
del model
|
||||||
|
|
||||||
|
print(model_name, generations)
|
||||||
|
expected_strs = EXPECTED_STRS_MAP[model_name]
|
||||||
|
for i in range(len(example_prompts)):
|
||||||
|
generated_str = generations[i]
|
||||||
|
expected_str = expected_strs[i]
|
||||||
|
assert expected_str == generated_str, (
|
||||||
|
f"Test{i}:\nExpected: {expected_str!r}\nvLLM: {generated_str!r}")
|
@ -467,6 +467,10 @@ if hasattr(torch.ops._C, "ggml_dequantize"):
|
|||||||
|
|
||||||
|
|
||||||
# cutlass
|
# cutlass
|
||||||
|
def cutlass_scaled_mm_supports_fp4(cuda_device_capability: int) -> bool:
|
||||||
|
return torch.ops._C.cutlass_scaled_mm_supports_fp4(cuda_device_capability)
|
||||||
|
|
||||||
|
|
||||||
def cutlass_scaled_fp4_mm(a: torch.Tensor, b: torch.Tensor,
|
def cutlass_scaled_fp4_mm(a: torch.Tensor, b: torch.Tensor,
|
||||||
block_scale_a: torch.Tensor,
|
block_scale_a: torch.Tensor,
|
||||||
block_scale_b: torch.Tensor, alpha: torch.Tensor,
|
block_scale_b: torch.Tensor, alpha: torch.Tensor,
|
||||||
|
@ -613,7 +613,7 @@ class ModelConfig:
|
|||||||
optimized_quantization_methods = [
|
optimized_quantization_methods = [
|
||||||
"fp8", "marlin", "modelopt", "gptq_marlin_24", "gptq_marlin",
|
"fp8", "marlin", "modelopt", "gptq_marlin_24", "gptq_marlin",
|
||||||
"awq_marlin", "fbgemm_fp8", "compressed_tensors",
|
"awq_marlin", "fbgemm_fp8", "compressed_tensors",
|
||||||
"compressed-tensors", "experts_int8", "quark"
|
"compressed-tensors", "experts_int8", "quark", "nvfp4"
|
||||||
]
|
]
|
||||||
if self.quantization is not None:
|
if self.quantization is not None:
|
||||||
self.quantization = self.quantization.lower()
|
self.quantization = self.quantization.lower()
|
||||||
|
@ -30,12 +30,23 @@ from vllm.model_executor.utils import set_weight_attrs
|
|||||||
logger = init_logger(__name__)
|
logger = init_logger(__name__)
|
||||||
|
|
||||||
WEIGHT_LOADER_V2_SUPPORTED = [
|
WEIGHT_LOADER_V2_SUPPORTED = [
|
||||||
"CompressedTensorsLinearMethod", "AWQMarlinLinearMethod",
|
"CompressedTensorsLinearMethod",
|
||||||
"AWQLinearMethod", "GPTQMarlinLinearMethod", "Fp8LinearMethod",
|
"AWQMarlinLinearMethod",
|
||||||
"MarlinLinearMethod", "QQQLinearMethod", "GPTQMarlin24LinearMethod",
|
"AWQLinearMethod",
|
||||||
"TPUInt8LinearMethod", "GPTQLinearMethod", "FBGEMMFp8LinearMethod",
|
"GPTQMarlinLinearMethod",
|
||||||
"ModelOptFp8LinearMethod", "IPEXAWQLinearMethod", "IPEXGPTQLinearMethod",
|
"Fp8LinearMethod",
|
||||||
"HQQMarlinMethod", "QuarkLinearMethod"
|
"MarlinLinearMethod",
|
||||||
|
"QQQLinearMethod",
|
||||||
|
"GPTQMarlin24LinearMethod",
|
||||||
|
"TPUInt8LinearMethod",
|
||||||
|
"GPTQLinearMethod",
|
||||||
|
"FBGEMMFp8LinearMethod",
|
||||||
|
"ModelOptFp8LinearMethod",
|
||||||
|
"IPEXAWQLinearMethod",
|
||||||
|
"IPEXGPTQLinearMethod",
|
||||||
|
"HQQMarlinMethod",
|
||||||
|
"QuarkLinearMethod",
|
||||||
|
"ModelOptNvFp4LinearMethod",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@ -14,6 +14,7 @@ QUANTIZATION_METHODS: List[str] = [
|
|||||||
"ptpc_fp8",
|
"ptpc_fp8",
|
||||||
"fbgemm_fp8",
|
"fbgemm_fp8",
|
||||||
"modelopt",
|
"modelopt",
|
||||||
|
"nvfp4",
|
||||||
# The order of gptq methods is important for config.py iteration over
|
# The order of gptq methods is important for config.py iteration over
|
||||||
# override_quantization_method(..)
|
# override_quantization_method(..)
|
||||||
"marlin",
|
"marlin",
|
||||||
@ -97,7 +98,7 @@ def get_quantization_config(quantization: str) -> Type[QuantizationConfig]:
|
|||||||
from .hqq_marlin import HQQMarlinConfig
|
from .hqq_marlin import HQQMarlinConfig
|
||||||
from .ipex_quant import IPEXConfig
|
from .ipex_quant import IPEXConfig
|
||||||
from .marlin import MarlinConfig
|
from .marlin import MarlinConfig
|
||||||
from .modelopt import ModelOptFp8Config
|
from .modelopt import ModelOptFp8Config, ModelOptNvFp4Config
|
||||||
from .moe_wna16 import MoeWNA16Config
|
from .moe_wna16 import MoeWNA16Config
|
||||||
from .neuron_quant import NeuronQuantConfig
|
from .neuron_quant import NeuronQuantConfig
|
||||||
from .ptpc_fp8 import PTPCFp8Config
|
from .ptpc_fp8 import PTPCFp8Config
|
||||||
@ -112,6 +113,7 @@ def get_quantization_config(quantization: str) -> Type[QuantizationConfig]:
|
|||||||
"fp8": Fp8Config,
|
"fp8": Fp8Config,
|
||||||
"fbgemm_fp8": FBGEMMFp8Config,
|
"fbgemm_fp8": FBGEMMFp8Config,
|
||||||
"modelopt": ModelOptFp8Config,
|
"modelopt": ModelOptFp8Config,
|
||||||
|
"nvfp4": ModelOptNvFp4Config,
|
||||||
# The order of gptq methods is important for config.py iteration over
|
# The order of gptq methods is important for config.py iteration over
|
||||||
# override_quantization_method(..)
|
# override_quantization_method(..)
|
||||||
"marlin": MarlinConfig,
|
"marlin": MarlinConfig,
|
||||||
|
@ -1,24 +1,31 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
|
||||||
from typing import Any, Dict, List, Optional
|
from typing import Any, Dict, List, Optional, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch.nn import Module
|
from torch.nn import Module
|
||||||
from torch.nn.parameter import Parameter
|
from torch.nn.parameter import Parameter
|
||||||
|
|
||||||
|
from vllm._custom_ops import (cutlass_scaled_fp4_mm,
|
||||||
|
cutlass_scaled_mm_supports_fp4, scaled_fp4_quant)
|
||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
|
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
|
||||||
|
UnquantizedLinearMethod)
|
||||||
from vllm.model_executor.layers.quantization.base_config import (
|
from vllm.model_executor.layers.quantization.base_config import (
|
||||||
QuantizationConfig, QuantizeMethodBase)
|
QuantizationConfig, QuantizeMethodBase)
|
||||||
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
|
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
|
||||||
|
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
||||||
|
is_layer_skipped)
|
||||||
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
||||||
Fp8LinearOp, requantize_with_max_scale)
|
Fp8LinearOp, requantize_with_max_scale)
|
||||||
from vllm.model_executor.parameter import (ModelWeightParameter,
|
from vllm.model_executor.parameter import (ModelWeightParameter,
|
||||||
PerTensorScaleParameter)
|
PerTensorScaleParameter)
|
||||||
|
from vllm.platforms import current_platform
|
||||||
|
|
||||||
logger = init_logger(__name__)
|
logger = init_logger(__name__)
|
||||||
|
|
||||||
ACTIVATION_SCHEMES = ["static"]
|
QUANT_ALGOS = ["FP8", "NVFP4"]
|
||||||
|
KV_CACHE_QUANT_ALGOS = ["FP8"]
|
||||||
|
|
||||||
|
|
||||||
class ModelOptFp8Config(QuantizationConfig):
|
class ModelOptFp8Config(QuantizationConfig):
|
||||||
@ -54,12 +61,13 @@ class ModelOptFp8Config(QuantizationConfig):
|
|||||||
def from_config(cls, config: Dict[str, Any]) -> "ModelOptFp8Config":
|
def from_config(cls, config: Dict[str, Any]) -> "ModelOptFp8Config":
|
||||||
quant_config = cls.get_from_keys(config, ["quantization"])
|
quant_config = cls.get_from_keys(config, ["quantization"])
|
||||||
quant_method = quant_config["quant_algo"]
|
quant_method = quant_config["quant_algo"]
|
||||||
is_checkpoint_fp8_serialized = ("FP8" in quant_method)
|
if quant_method not in QUANT_ALGOS:
|
||||||
if not is_checkpoint_fp8_serialized:
|
raise ValueError(f"ModelOpt currently only supports: {QUANT_ALGOS}"
|
||||||
raise ValueError("ModelOpt currently only supports static FP8 "
|
" quantizations in vLLM. Please check the "
|
||||||
"quantization in vLLM. Please check the "
|
|
||||||
"`hf_quant_config.json` file for your model's "
|
"`hf_quant_config.json` file for your model's "
|
||||||
"quant configuration.")
|
"quant configuration.")
|
||||||
|
is_checkpoint_fp8_serialized = ("FP8" in quant_method)
|
||||||
|
|
||||||
return cls(is_checkpoint_fp8_serialized)
|
return cls(is_checkpoint_fp8_serialized)
|
||||||
|
|
||||||
def get_quant_method(self, layer: torch.nn.Module,
|
def get_quant_method(self, layer: torch.nn.Module,
|
||||||
@ -72,15 +80,6 @@ class ModelOptFp8Config(QuantizationConfig):
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
class ModelOptFp8KVCacheMethod(BaseKVCacheMethod):
|
|
||||||
"""
|
|
||||||
Supports loading kv-cache scaling factors from FP8 checkpoints.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, quant_config: ModelOptFp8Config):
|
|
||||||
super().__init__(quant_config)
|
|
||||||
|
|
||||||
|
|
||||||
class ModelOptFp8LinearMethod(LinearMethodBase):
|
class ModelOptFp8LinearMethod(LinearMethodBase):
|
||||||
"""Linear method for Model Optimizer static quantization.
|
"""Linear method for Model Optimizer static quantization.
|
||||||
Supports loading FP8 checkpoints with static weight scale and
|
Supports loading FP8 checkpoints with static weight scale and
|
||||||
@ -162,3 +161,250 @@ class ModelOptFp8LinearMethod(LinearMethodBase):
|
|||||||
weight_scale=layer.weight_scale,
|
weight_scale=layer.weight_scale,
|
||||||
input_scale=layer.input_scale,
|
input_scale=layer.input_scale,
|
||||||
bias=bias)
|
bias=bias)
|
||||||
|
|
||||||
|
|
||||||
|
class ModelOptNvFp4Config(QuantizationConfig):
|
||||||
|
"""Config class for ModelOpt FP4."""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
is_checkpoint_nvfp4_serialized: bool,
|
||||||
|
kv_cache_quant_algo: str,
|
||||||
|
exclude_modules: List[str],
|
||||||
|
group_size: int = 16,
|
||||||
|
) -> None:
|
||||||
|
self.is_checkpoint_nvfp4_serialized = is_checkpoint_nvfp4_serialized
|
||||||
|
if is_checkpoint_nvfp4_serialized:
|
||||||
|
logger.warning(
|
||||||
|
"Detected ModelOpt NVFP4 checkpoint. Please note that"
|
||||||
|
" the format is experimental and could change in future.")
|
||||||
|
|
||||||
|
self.group_size = group_size
|
||||||
|
self.kv_cache_quant_algo = kv_cache_quant_algo
|
||||||
|
self.exclude_modules = exclude_modules
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def get_name(cls) -> str:
|
||||||
|
return "modelopt_nvfp4"
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
||||||
|
return [torch.bfloat16, torch.half, torch.float8_e4m3fn]
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def get_min_capability(cls) -> int:
|
||||||
|
return 100
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def get_config_filenames(cls) -> List[str]:
|
||||||
|
return ["hf_quant_config.json"]
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_config(cls, config: Dict[str, Any]) -> "ModelOptNvFp4Config":
|
||||||
|
quant_config = cls.get_from_keys(config, ["quantization"])
|
||||||
|
quant_method = quant_config["quant_algo"]
|
||||||
|
if quant_method not in QUANT_ALGOS:
|
||||||
|
raise ValueError(f"ModelOpt currently only supports: {QUANT_ALGOS}"
|
||||||
|
" quantizations in vLLM. Please check the "
|
||||||
|
"`hf_quant_config.json` file for your model's "
|
||||||
|
"quant configuration.")
|
||||||
|
is_checkpoint_nvfp4_serialized = ("NVFP4" in quant_method)
|
||||||
|
kv_cache_quant_algo = quant_config["kv_cache_quant_algo"]
|
||||||
|
group_size = quant_config["group_size"]
|
||||||
|
exclude_modules = quant_config["exclude_modules"]
|
||||||
|
if not (group_size and kv_cache_quant_algo and exclude_modules):
|
||||||
|
raise ValueError("NVFP4 quantization requires group size and "
|
||||||
|
"kv_cache_quant_algo specified in "
|
||||||
|
"hf_quant_config.json")
|
||||||
|
return cls(is_checkpoint_nvfp4_serialized, kv_cache_quant_algo,
|
||||||
|
exclude_modules, group_size)
|
||||||
|
|
||||||
|
def get_quant_method(self, layer: torch.nn.Module,
|
||||||
|
prefix: str) -> Optional["QuantizeMethodBase"]:
|
||||||
|
from vllm.attention.layer import Attention # Avoid circular import
|
||||||
|
if isinstance(layer, LinearBase):
|
||||||
|
if is_layer_skipped(prefix, self.exclude_modules):
|
||||||
|
return UnquantizedLinearMethod()
|
||||||
|
return ModelOptNvFp4LinearMethod(self)
|
||||||
|
elif isinstance(layer, Attention):
|
||||||
|
return ModelOptFp8KVCacheMethod(self)
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def cutlass_fp4_supported() -> bool:
|
||||||
|
if not current_platform.is_cuda():
|
||||||
|
return False
|
||||||
|
capability_tuple = current_platform.get_device_capability()
|
||||||
|
capability = -1 if capability_tuple is None else capability_tuple.to_int()
|
||||||
|
return cutlass_scaled_mm_supports_fp4(capability)
|
||||||
|
|
||||||
|
|
||||||
|
class ModelOptFp8KVCacheMethod(BaseKVCacheMethod):
|
||||||
|
"""
|
||||||
|
Supports loading kv-cache scaling factors from FP8 checkpoints.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, quant_config: Union[ModelOptFp8Config,
|
||||||
|
ModelOptNvFp4Config]):
|
||||||
|
super().__init__(quant_config)
|
||||||
|
|
||||||
|
|
||||||
|
class ModelOptNvFp4LinearMethod(LinearMethodBase):
|
||||||
|
"""Linear method for Model Optimizer NVFP4.
|
||||||
|
Supports loading NVFP4 checkpoints with the following structure:
|
||||||
|
|
||||||
|
input_scale: torch.float32, scalar ,
|
||||||
|
weight: NVFP4(represented as byte) Shape: [1, X, y/2]
|
||||||
|
weight_scale: FP8-E4M3, Shape: [X, Y], aka per block scale,
|
||||||
|
weight_scale_2: torch.float32, scalar,
|
||||||
|
Args: quant_config: The ModelOpt quantization config.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, quant_config: ModelOptNvFp4Config):
|
||||||
|
self.quant_config = quant_config
|
||||||
|
self.cutlass_nvfp4_supported = cutlass_fp4_supported()
|
||||||
|
if not self.cutlass_nvfp4_supported:
|
||||||
|
raise ValueError("Current platform does not support NVFP4"
|
||||||
|
" quantization. Please use Blackwell and above.")
|
||||||
|
|
||||||
|
def create_weights(
|
||||||
|
self,
|
||||||
|
layer: torch.nn.Module,
|
||||||
|
input_size_per_partition: int,
|
||||||
|
output_partition_sizes: List[int],
|
||||||
|
input_size: int,
|
||||||
|
output_size: int,
|
||||||
|
params_dtype: torch.dtype,
|
||||||
|
**extra_weight_attrs,
|
||||||
|
):
|
||||||
|
del input_size, output_size
|
||||||
|
if not self.quant_config.is_checkpoint_nvfp4_serialized:
|
||||||
|
raise ValueError("NVFP4 quantization was selected, "
|
||||||
|
" dynamic quantization is not supported.")
|
||||||
|
output_size_per_partition = sum(output_partition_sizes)
|
||||||
|
weight_loader = extra_weight_attrs.get("weight_loader")
|
||||||
|
layer.logical_widths = output_partition_sizes
|
||||||
|
layer.input_size_per_partition = input_size_per_partition
|
||||||
|
layer.output_size_per_partition = output_size_per_partition
|
||||||
|
|
||||||
|
if (input_size_per_partition % 16 != 0):
|
||||||
|
raise ValueError("Unsupported model when in features size is "
|
||||||
|
"not multiple of 16")
|
||||||
|
# The nvfp4 weight is still represented as
|
||||||
|
weight_dtype = (torch.float8_e4m3fn
|
||||||
|
if self.quant_config.is_checkpoint_nvfp4_serialized
|
||||||
|
else params_dtype)
|
||||||
|
# Weight
|
||||||
|
weight = ModelWeightParameter(
|
||||||
|
data=torch.empty(
|
||||||
|
# 2 fp4 items are packed in the input dimension
|
||||||
|
layer.output_size_per_partition,
|
||||||
|
layer.input_size_per_partition // 2,
|
||||||
|
dtype=torch.uint8),
|
||||||
|
input_dim=1,
|
||||||
|
output_dim=0,
|
||||||
|
weight_loader=weight_loader)
|
||||||
|
layer.register_parameter("weight", weight)
|
||||||
|
|
||||||
|
# Input Weight Scale
|
||||||
|
input_scale = PerTensorScaleParameter(data=torch.empty(
|
||||||
|
len(output_partition_sizes), dtype=torch.float32),
|
||||||
|
weight_loader=weight_loader)
|
||||||
|
layer.register_parameter("input_scale", input_scale)
|
||||||
|
|
||||||
|
# Global Weight Scale
|
||||||
|
weight_scale_2 = PerTensorScaleParameter(data=torch.empty(
|
||||||
|
len(output_partition_sizes), dtype=torch.float32),
|
||||||
|
weight_loader=weight_loader)
|
||||||
|
layer.register_parameter("weight_scale_2", weight_scale_2)
|
||||||
|
|
||||||
|
# Per Block Weight Scale
|
||||||
|
weight_scale = ModelWeightParameter(data=torch.empty(
|
||||||
|
output_size_per_partition,
|
||||||
|
input_size_per_partition // self.quant_config.group_size,
|
||||||
|
dtype=weight_dtype,
|
||||||
|
),
|
||||||
|
input_dim=1,
|
||||||
|
output_dim=0,
|
||||||
|
weight_loader=weight_loader)
|
||||||
|
|
||||||
|
layer.register_parameter("weight_scale", weight_scale)
|
||||||
|
|
||||||
|
def swizzle_blockscale(self, scale: torch.tensor):
|
||||||
|
assert (scale.dtype == torch.float8_e4m3fn)
|
||||||
|
# Pad and blockwise interleave weight_scale
|
||||||
|
scale_ndim = scale.ndim
|
||||||
|
if scale.ndim == 2:
|
||||||
|
scale = scale.unsqueeze(0)
|
||||||
|
assert scale.ndim == 3
|
||||||
|
B, M, K = scale.shape
|
||||||
|
round_up_multiple = lambda x, m: (x + m - 1) // m * m
|
||||||
|
M_padded = round_up_multiple(M, 128)
|
||||||
|
K_padded = round_up_multiple(K, 4)
|
||||||
|
padded_scale = torch.zeros((B, M_padded, K_padded), dtype=scale.dtype)
|
||||||
|
padded_scale[:B, :M, :K] = scale
|
||||||
|
batches, rows, cols = padded_scale.shape
|
||||||
|
assert rows % 128 == 0
|
||||||
|
assert cols % 4 == 0
|
||||||
|
padded_scale = padded_scale.reshape(batches, rows // 128, 4, 32,
|
||||||
|
cols // 4, 4)
|
||||||
|
swizzled_scale = padded_scale.permute((0, 1, 4, 3, 2, 5))
|
||||||
|
swizzled_scale = swizzled_scale.contiguous().cuda()
|
||||||
|
return (swizzled_scale.reshape(M, K)
|
||||||
|
if scale_ndim == 2 else swizzled_scale.reshape(B, M, K))
|
||||||
|
|
||||||
|
def process_weights_after_loading(self, layer: Module) -> None:
|
||||||
|
|
||||||
|
# global scales:
|
||||||
|
input_scale_2 = layer.input_scale.max().to(torch.float32)
|
||||||
|
layer.input_scale = Parameter(input_scale_2, requires_grad=False)
|
||||||
|
|
||||||
|
weight_scale_2 = layer.weight_scale_2.max().to(torch.float32)
|
||||||
|
layer.weight_scale_2 = Parameter(weight_scale_2, requires_grad=False)
|
||||||
|
|
||||||
|
layer.alpha = Parameter(layer.input_scale * layer.weight_scale_2,
|
||||||
|
requires_grad=False)
|
||||||
|
|
||||||
|
# Swizzle the weight blockscale.
|
||||||
|
# contracting dimension is input dimension
|
||||||
|
# block_size = 16;
|
||||||
|
assert (layer.weight_scale.shape[1] % 16 == 0), (
|
||||||
|
"Expected weight_scale.dim(1) to be divisible by 16")
|
||||||
|
assert (layer.weight_scale.dtype == torch.float8_e4m3fn), (
|
||||||
|
"Weight Block scale must be represented as FP8-E4M3")
|
||||||
|
swizzled_weight_scale = self.swizzle_blockscale(layer.weight_scale)
|
||||||
|
|
||||||
|
layer.weight_scale_swizzled = Parameter(swizzled_weight_scale,
|
||||||
|
requires_grad=False)
|
||||||
|
|
||||||
|
def apply(
|
||||||
|
self,
|
||||||
|
layer: torch.nn.Module,
|
||||||
|
x: torch.Tensor,
|
||||||
|
bias: Optional[torch.Tensor] = None,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
output_dtype = x.dtype
|
||||||
|
|
||||||
|
# for input only the contracting dimension has a constraint.
|
||||||
|
x_m, _ = x.shape
|
||||||
|
w_n, _ = layer.weight.shape
|
||||||
|
output_shape = [x_m, w_n]
|
||||||
|
|
||||||
|
# quantize BF16 or FP16 to (FP4 and interleaved block scale)
|
||||||
|
s_quant = 1 / layer.input_scale
|
||||||
|
x_fp4, x_blockscale = scaled_fp4_quant(x, s_quant)
|
||||||
|
|
||||||
|
# validate dtypes of quantized input, input block scale,
|
||||||
|
# weight and weight_blockscale
|
||||||
|
assert (x_fp4.dtype == torch.uint8)
|
||||||
|
assert (layer.weight.dtype == torch.uint8)
|
||||||
|
assert (x_blockscale.dtype == torch.float8_e4m3fn)
|
||||||
|
assert (layer.weight_scale_swizzled.dtype == torch.float8_e4m3fn)
|
||||||
|
assert (layer.alpha.dtype == torch.float32)
|
||||||
|
|
||||||
|
out = cutlass_scaled_fp4_mm(x_fp4, layer.weight, x_blockscale,
|
||||||
|
layer.weight_scale_swizzled, layer.alpha,
|
||||||
|
output_dtype)
|
||||||
|
if bias is not None:
|
||||||
|
out = out + bias
|
||||||
|
return out.view(*output_shape)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user