[Kernel] Add ModelOpt FP4 Checkpoint Support (#12520)
Signed-off-by: Pavani Majety <pmajety@nvidia.com>
This commit is contained in:
parent
5c538c37b2
commit
debd6bbf09
@ -160,14 +160,16 @@ torch::Tensor ggml_moe_a8(torch::Tensor X, torch::Tensor W,
|
||||
int64_t ggml_moe_get_block_size(int64_t type);
|
||||
|
||||
#ifndef USE_ROCM
|
||||
|
||||
bool cutlass_scaled_mm_supports_fp4(int64_t cuda_device_capability);
|
||||
bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability);
|
||||
bool cutlass_scaled_mm_supports_block_fp8(int64_t cuda_device_capability);
|
||||
|
||||
void cutlass_scaled_fp4_mm(torch::Tensor& D, torch::Tensor const& A,
|
||||
torch::Tensor const& B, torch::Tensor const& A_sf,
|
||||
torch::Tensor const& B_sf,
|
||||
torch::Tensor const& alpha);
|
||||
|
||||
bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability);
|
||||
bool cutlass_scaled_mm_supports_block_fp8(int64_t cuda_device_capability);
|
||||
|
||||
void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a,
|
||||
torch::Tensor const& b, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales,
|
||||
|
@ -36,3 +36,9 @@ void cutlass_scaled_fp4_mm(torch::Tensor& D, torch::Tensor const& A,
|
||||
"be compiled using CUDA 12.8 and target "
|
||||
"compute capability 100 or above.");
|
||||
}
|
||||
|
||||
bool cutlass_scaled_mm_supports_fp4(int64_t cuda_device_capability) {
|
||||
int runtimeVersion;
|
||||
cudaRuntimeGetVersion(&runtimeVersion);
|
||||
return cuda_device_capability >= 100 && runtimeVersion >= 12080;
|
||||
}
|
@ -201,10 +201,11 @@ void runGemm(at::Tensor& D, at::Tensor const& A, at::Tensor const& B,
|
||||
#endif // defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
|
||||
|
||||
#define CHECK_TYPE(x, st, m) \
|
||||
TORCH_CHECK(x.scalar_type() == st, "Inconsistency of Tensor type:", m)
|
||||
#define CHECK_TH_CUDA(x, m) TORCH_CHECK(x.is_cuda(), m, "must be a CUDA tensor")
|
||||
TORCH_CHECK(x.scalar_type() == st, ": Inconsistency of Tensor type:", m)
|
||||
#define CHECK_TH_CUDA(x, m) \
|
||||
TORCH_CHECK(x.is_cuda(), m, ": must be a CUDA tensor")
|
||||
#define CHECK_CONTIGUOUS(x, m) \
|
||||
TORCH_CHECK(x.is_contiguous(), m, "must be contiguous")
|
||||
TORCH_CHECK(x.is_contiguous(), m, ": must be contiguous")
|
||||
#define CHECK_INPUT(x, st, m) \
|
||||
CHECK_TH_CUDA(x, m); \
|
||||
CHECK_CONTIGUOUS(x, m); \
|
||||
|
@ -434,6 +434,10 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
" Tensor! output_scale, Tensor input_scale) -> ()");
|
||||
ops.impl("scaled_fp4_quant", torch::kCUDA, &scaled_fp4_quant);
|
||||
|
||||
// Check if cutlass_scaled_mm_fp4 is supported for CUDA devices
|
||||
// of the given capability
|
||||
ops.def("cutlass_scaled_mm_supports_fp4(int cuda_device_capability) -> bool");
|
||||
ops.impl("cutlass_scaled_mm_supports_fp4", &cutlass_scaled_mm_supports_fp4);
|
||||
#endif
|
||||
|
||||
// Quantized GEMM for GPTQ.
|
||||
|
82
tests/models/decoder_only/language/test_nvfp4.py
Normal file
82
tests/models/decoder_only/language/test_nvfp4.py
Normal file
@ -0,0 +1,82 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# flake8: noqa
|
||||
"""Tests Model Optimizer nvfp4 models against ground truth generation
|
||||
Note: these tests will only pass on B200
|
||||
"""
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import pytest
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from tests.quantization.utils import is_quant_method_supported
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
||||
|
||||
MAX_MODEL_LEN = 1024
|
||||
|
||||
MODELS = ["nvidia/Llama-3.3-70B-Instruct-FP4"]
|
||||
|
||||
EXPECTED_STRS_MAP = {
|
||||
"nvidia/Llama-3.3-70B-Instruct-FP4": [
|
||||
'vLLM (Vectorized Large Language Model) is indeed a high-throughput and memory-efficient inference',
|
||||
'Here are the major milestones in the development of artificial intelligence (AI) from 1950 to ',
|
||||
'Artificial intelligence (AI) and human intelligence (HI) are two distinct forms of intelligence that process',
|
||||
'A neural network is a type of machine learning model inspired by the structure and function of the human brain',
|
||||
'In the heart of a cutting-edge robotics lab, a team of engineers had been working tirelessly to push',
|
||||
'The COVID-19 pandemic has had a profound impact on global economic structures and future business models, leading',
|
||||
'The Mona Lisa, painted by Leonardo da Vinci in the early 16th century, is one of',
|
||||
'Here are the translations:\n\n* Japanese: (Sasuga no tori ga miwa o ts'
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
# This test compares against golden strings for exact match since
|
||||
# there is no baseline implementation to compare against
|
||||
# and is unstable w.r.t specifics of the fp4 implementation or
|
||||
# the hardware being run on.
|
||||
# Disabled to prevent it from breaking the build
|
||||
@pytest.mark.skip(
|
||||
reason=
|
||||
"Prevent unstable test based on golden strings from breaking the build "
|
||||
" and test input model being too large and hanging the system.")
|
||||
@pytest.mark.quant_model
|
||||
@pytest.mark.skipif(not is_quant_method_supported("nvfp4"),
|
||||
reason="nvfp4 is not supported on this GPU type.")
|
||||
@pytest.mark.parametrize("model_name", MODELS)
|
||||
def test_models(example_prompts, model_name) -> None:
|
||||
model = LLM(
|
||||
model=model_name,
|
||||
max_model_len=MAX_MODEL_LEN,
|
||||
trust_remote_code=True,
|
||||
enforce_eager=True,
|
||||
quantization="nvfp4",
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
formatted_prompts = [
|
||||
tokenizer.apply_chat_template([{
|
||||
"role": "user",
|
||||
"content": prompt
|
||||
}],
|
||||
tokenize=False,
|
||||
add_generation_prompt=True)
|
||||
for prompt in example_prompts
|
||||
]
|
||||
params = SamplingParams(max_tokens=20, temperature=0)
|
||||
generations: List[str] = []
|
||||
# Note: these need to be run 1 at a time due to numerical precision,
|
||||
# since the expected strs were generated this way.
|
||||
for prompt in formatted_prompts:
|
||||
outputs = model.generate(prompt, params)
|
||||
generations.append(outputs[0].outputs[0].text)
|
||||
del model
|
||||
|
||||
print(model_name, generations)
|
||||
expected_strs = EXPECTED_STRS_MAP[model_name]
|
||||
for i in range(len(example_prompts)):
|
||||
generated_str = generations[i]
|
||||
expected_str = expected_strs[i]
|
||||
assert expected_str == generated_str, (
|
||||
f"Test{i}:\nExpected: {expected_str!r}\nvLLM: {generated_str!r}")
|
@ -467,6 +467,10 @@ if hasattr(torch.ops._C, "ggml_dequantize"):
|
||||
|
||||
|
||||
# cutlass
|
||||
def cutlass_scaled_mm_supports_fp4(cuda_device_capability: int) -> bool:
|
||||
return torch.ops._C.cutlass_scaled_mm_supports_fp4(cuda_device_capability)
|
||||
|
||||
|
||||
def cutlass_scaled_fp4_mm(a: torch.Tensor, b: torch.Tensor,
|
||||
block_scale_a: torch.Tensor,
|
||||
block_scale_b: torch.Tensor, alpha: torch.Tensor,
|
||||
|
@ -613,7 +613,7 @@ class ModelConfig:
|
||||
optimized_quantization_methods = [
|
||||
"fp8", "marlin", "modelopt", "gptq_marlin_24", "gptq_marlin",
|
||||
"awq_marlin", "fbgemm_fp8", "compressed_tensors",
|
||||
"compressed-tensors", "experts_int8", "quark"
|
||||
"compressed-tensors", "experts_int8", "quark", "nvfp4"
|
||||
]
|
||||
if self.quantization is not None:
|
||||
self.quantization = self.quantization.lower()
|
||||
|
@ -30,12 +30,23 @@ from vllm.model_executor.utils import set_weight_attrs
|
||||
logger = init_logger(__name__)
|
||||
|
||||
WEIGHT_LOADER_V2_SUPPORTED = [
|
||||
"CompressedTensorsLinearMethod", "AWQMarlinLinearMethod",
|
||||
"AWQLinearMethod", "GPTQMarlinLinearMethod", "Fp8LinearMethod",
|
||||
"MarlinLinearMethod", "QQQLinearMethod", "GPTQMarlin24LinearMethod",
|
||||
"TPUInt8LinearMethod", "GPTQLinearMethod", "FBGEMMFp8LinearMethod",
|
||||
"ModelOptFp8LinearMethod", "IPEXAWQLinearMethod", "IPEXGPTQLinearMethod",
|
||||
"HQQMarlinMethod", "QuarkLinearMethod"
|
||||
"CompressedTensorsLinearMethod",
|
||||
"AWQMarlinLinearMethod",
|
||||
"AWQLinearMethod",
|
||||
"GPTQMarlinLinearMethod",
|
||||
"Fp8LinearMethod",
|
||||
"MarlinLinearMethod",
|
||||
"QQQLinearMethod",
|
||||
"GPTQMarlin24LinearMethod",
|
||||
"TPUInt8LinearMethod",
|
||||
"GPTQLinearMethod",
|
||||
"FBGEMMFp8LinearMethod",
|
||||
"ModelOptFp8LinearMethod",
|
||||
"IPEXAWQLinearMethod",
|
||||
"IPEXGPTQLinearMethod",
|
||||
"HQQMarlinMethod",
|
||||
"QuarkLinearMethod",
|
||||
"ModelOptNvFp4LinearMethod",
|
||||
]
|
||||
|
||||
|
||||
|
@ -14,6 +14,7 @@ QUANTIZATION_METHODS: List[str] = [
|
||||
"ptpc_fp8",
|
||||
"fbgemm_fp8",
|
||||
"modelopt",
|
||||
"nvfp4",
|
||||
# The order of gptq methods is important for config.py iteration over
|
||||
# override_quantization_method(..)
|
||||
"marlin",
|
||||
@ -97,7 +98,7 @@ def get_quantization_config(quantization: str) -> Type[QuantizationConfig]:
|
||||
from .hqq_marlin import HQQMarlinConfig
|
||||
from .ipex_quant import IPEXConfig
|
||||
from .marlin import MarlinConfig
|
||||
from .modelopt import ModelOptFp8Config
|
||||
from .modelopt import ModelOptFp8Config, ModelOptNvFp4Config
|
||||
from .moe_wna16 import MoeWNA16Config
|
||||
from .neuron_quant import NeuronQuantConfig
|
||||
from .ptpc_fp8 import PTPCFp8Config
|
||||
@ -112,6 +113,7 @@ def get_quantization_config(quantization: str) -> Type[QuantizationConfig]:
|
||||
"fp8": Fp8Config,
|
||||
"fbgemm_fp8": FBGEMMFp8Config,
|
||||
"modelopt": ModelOptFp8Config,
|
||||
"nvfp4": ModelOptNvFp4Config,
|
||||
# The order of gptq methods is important for config.py iteration over
|
||||
# override_quantization_method(..)
|
||||
"marlin": MarlinConfig,
|
||||
|
@ -1,24 +1,31 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch.nn import Module
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from vllm._custom_ops import (cutlass_scaled_fp4_mm,
|
||||
cutlass_scaled_mm_supports_fp4, scaled_fp4_quant)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
|
||||
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
|
||||
UnquantizedLinearMethod)
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig, QuantizeMethodBase)
|
||||
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
|
||||
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
||||
is_layer_skipped)
|
||||
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
||||
Fp8LinearOp, requantize_with_max_scale)
|
||||
from vllm.model_executor.parameter import (ModelWeightParameter,
|
||||
PerTensorScaleParameter)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
ACTIVATION_SCHEMES = ["static"]
|
||||
QUANT_ALGOS = ["FP8", "NVFP4"]
|
||||
KV_CACHE_QUANT_ALGOS = ["FP8"]
|
||||
|
||||
|
||||
class ModelOptFp8Config(QuantizationConfig):
|
||||
@ -54,12 +61,13 @@ class ModelOptFp8Config(QuantizationConfig):
|
||||
def from_config(cls, config: Dict[str, Any]) -> "ModelOptFp8Config":
|
||||
quant_config = cls.get_from_keys(config, ["quantization"])
|
||||
quant_method = quant_config["quant_algo"]
|
||||
is_checkpoint_fp8_serialized = ("FP8" in quant_method)
|
||||
if not is_checkpoint_fp8_serialized:
|
||||
raise ValueError("ModelOpt currently only supports static FP8 "
|
||||
"quantization in vLLM. Please check the "
|
||||
if quant_method not in QUANT_ALGOS:
|
||||
raise ValueError(f"ModelOpt currently only supports: {QUANT_ALGOS}"
|
||||
" quantizations in vLLM. Please check the "
|
||||
"`hf_quant_config.json` file for your model's "
|
||||
"quant configuration.")
|
||||
is_checkpoint_fp8_serialized = ("FP8" in quant_method)
|
||||
|
||||
return cls(is_checkpoint_fp8_serialized)
|
||||
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
@ -72,15 +80,6 @@ class ModelOptFp8Config(QuantizationConfig):
|
||||
return None
|
||||
|
||||
|
||||
class ModelOptFp8KVCacheMethod(BaseKVCacheMethod):
|
||||
"""
|
||||
Supports loading kv-cache scaling factors from FP8 checkpoints.
|
||||
"""
|
||||
|
||||
def __init__(self, quant_config: ModelOptFp8Config):
|
||||
super().__init__(quant_config)
|
||||
|
||||
|
||||
class ModelOptFp8LinearMethod(LinearMethodBase):
|
||||
"""Linear method for Model Optimizer static quantization.
|
||||
Supports loading FP8 checkpoints with static weight scale and
|
||||
@ -162,3 +161,250 @@ class ModelOptFp8LinearMethod(LinearMethodBase):
|
||||
weight_scale=layer.weight_scale,
|
||||
input_scale=layer.input_scale,
|
||||
bias=bias)
|
||||
|
||||
|
||||
class ModelOptNvFp4Config(QuantizationConfig):
|
||||
"""Config class for ModelOpt FP4."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
is_checkpoint_nvfp4_serialized: bool,
|
||||
kv_cache_quant_algo: str,
|
||||
exclude_modules: List[str],
|
||||
group_size: int = 16,
|
||||
) -> None:
|
||||
self.is_checkpoint_nvfp4_serialized = is_checkpoint_nvfp4_serialized
|
||||
if is_checkpoint_nvfp4_serialized:
|
||||
logger.warning(
|
||||
"Detected ModelOpt NVFP4 checkpoint. Please note that"
|
||||
" the format is experimental and could change in future.")
|
||||
|
||||
self.group_size = group_size
|
||||
self.kv_cache_quant_algo = kv_cache_quant_algo
|
||||
self.exclude_modules = exclude_modules
|
||||
|
||||
@classmethod
|
||||
def get_name(cls) -> str:
|
||||
return "modelopt_nvfp4"
|
||||
|
||||
@classmethod
|
||||
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
||||
return [torch.bfloat16, torch.half, torch.float8_e4m3fn]
|
||||
|
||||
@classmethod
|
||||
def get_min_capability(cls) -> int:
|
||||
return 100
|
||||
|
||||
@classmethod
|
||||
def get_config_filenames(cls) -> List[str]:
|
||||
return ["hf_quant_config.json"]
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, config: Dict[str, Any]) -> "ModelOptNvFp4Config":
|
||||
quant_config = cls.get_from_keys(config, ["quantization"])
|
||||
quant_method = quant_config["quant_algo"]
|
||||
if quant_method not in QUANT_ALGOS:
|
||||
raise ValueError(f"ModelOpt currently only supports: {QUANT_ALGOS}"
|
||||
" quantizations in vLLM. Please check the "
|
||||
"`hf_quant_config.json` file for your model's "
|
||||
"quant configuration.")
|
||||
is_checkpoint_nvfp4_serialized = ("NVFP4" in quant_method)
|
||||
kv_cache_quant_algo = quant_config["kv_cache_quant_algo"]
|
||||
group_size = quant_config["group_size"]
|
||||
exclude_modules = quant_config["exclude_modules"]
|
||||
if not (group_size and kv_cache_quant_algo and exclude_modules):
|
||||
raise ValueError("NVFP4 quantization requires group size and "
|
||||
"kv_cache_quant_algo specified in "
|
||||
"hf_quant_config.json")
|
||||
return cls(is_checkpoint_nvfp4_serialized, kv_cache_quant_algo,
|
||||
exclude_modules, group_size)
|
||||
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["QuantizeMethodBase"]:
|
||||
from vllm.attention.layer import Attention # Avoid circular import
|
||||
if isinstance(layer, LinearBase):
|
||||
if is_layer_skipped(prefix, self.exclude_modules):
|
||||
return UnquantizedLinearMethod()
|
||||
return ModelOptNvFp4LinearMethod(self)
|
||||
elif isinstance(layer, Attention):
|
||||
return ModelOptFp8KVCacheMethod(self)
|
||||
return None
|
||||
|
||||
|
||||
def cutlass_fp4_supported() -> bool:
|
||||
if not current_platform.is_cuda():
|
||||
return False
|
||||
capability_tuple = current_platform.get_device_capability()
|
||||
capability = -1 if capability_tuple is None else capability_tuple.to_int()
|
||||
return cutlass_scaled_mm_supports_fp4(capability)
|
||||
|
||||
|
||||
class ModelOptFp8KVCacheMethod(BaseKVCacheMethod):
|
||||
"""
|
||||
Supports loading kv-cache scaling factors from FP8 checkpoints.
|
||||
"""
|
||||
|
||||
def __init__(self, quant_config: Union[ModelOptFp8Config,
|
||||
ModelOptNvFp4Config]):
|
||||
super().__init__(quant_config)
|
||||
|
||||
|
||||
class ModelOptNvFp4LinearMethod(LinearMethodBase):
|
||||
"""Linear method for Model Optimizer NVFP4.
|
||||
Supports loading NVFP4 checkpoints with the following structure:
|
||||
|
||||
input_scale: torch.float32, scalar ,
|
||||
weight: NVFP4(represented as byte) Shape: [1, X, y/2]
|
||||
weight_scale: FP8-E4M3, Shape: [X, Y], aka per block scale,
|
||||
weight_scale_2: torch.float32, scalar,
|
||||
Args: quant_config: The ModelOpt quantization config.
|
||||
"""
|
||||
|
||||
def __init__(self, quant_config: ModelOptNvFp4Config):
|
||||
self.quant_config = quant_config
|
||||
self.cutlass_nvfp4_supported = cutlass_fp4_supported()
|
||||
if not self.cutlass_nvfp4_supported:
|
||||
raise ValueError("Current platform does not support NVFP4"
|
||||
" quantization. Please use Blackwell and above.")
|
||||
|
||||
def create_weights(
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
input_size_per_partition: int,
|
||||
output_partition_sizes: List[int],
|
||||
input_size: int,
|
||||
output_size: int,
|
||||
params_dtype: torch.dtype,
|
||||
**extra_weight_attrs,
|
||||
):
|
||||
del input_size, output_size
|
||||
if not self.quant_config.is_checkpoint_nvfp4_serialized:
|
||||
raise ValueError("NVFP4 quantization was selected, "
|
||||
" dynamic quantization is not supported.")
|
||||
output_size_per_partition = sum(output_partition_sizes)
|
||||
weight_loader = extra_weight_attrs.get("weight_loader")
|
||||
layer.logical_widths = output_partition_sizes
|
||||
layer.input_size_per_partition = input_size_per_partition
|
||||
layer.output_size_per_partition = output_size_per_partition
|
||||
|
||||
if (input_size_per_partition % 16 != 0):
|
||||
raise ValueError("Unsupported model when in features size is "
|
||||
"not multiple of 16")
|
||||
# The nvfp4 weight is still represented as
|
||||
weight_dtype = (torch.float8_e4m3fn
|
||||
if self.quant_config.is_checkpoint_nvfp4_serialized
|
||||
else params_dtype)
|
||||
# Weight
|
||||
weight = ModelWeightParameter(
|
||||
data=torch.empty(
|
||||
# 2 fp4 items are packed in the input dimension
|
||||
layer.output_size_per_partition,
|
||||
layer.input_size_per_partition // 2,
|
||||
dtype=torch.uint8),
|
||||
input_dim=1,
|
||||
output_dim=0,
|
||||
weight_loader=weight_loader)
|
||||
layer.register_parameter("weight", weight)
|
||||
|
||||
# Input Weight Scale
|
||||
input_scale = PerTensorScaleParameter(data=torch.empty(
|
||||
len(output_partition_sizes), dtype=torch.float32),
|
||||
weight_loader=weight_loader)
|
||||
layer.register_parameter("input_scale", input_scale)
|
||||
|
||||
# Global Weight Scale
|
||||
weight_scale_2 = PerTensorScaleParameter(data=torch.empty(
|
||||
len(output_partition_sizes), dtype=torch.float32),
|
||||
weight_loader=weight_loader)
|
||||
layer.register_parameter("weight_scale_2", weight_scale_2)
|
||||
|
||||
# Per Block Weight Scale
|
||||
weight_scale = ModelWeightParameter(data=torch.empty(
|
||||
output_size_per_partition,
|
||||
input_size_per_partition // self.quant_config.group_size,
|
||||
dtype=weight_dtype,
|
||||
),
|
||||
input_dim=1,
|
||||
output_dim=0,
|
||||
weight_loader=weight_loader)
|
||||
|
||||
layer.register_parameter("weight_scale", weight_scale)
|
||||
|
||||
def swizzle_blockscale(self, scale: torch.tensor):
|
||||
assert (scale.dtype == torch.float8_e4m3fn)
|
||||
# Pad and blockwise interleave weight_scale
|
||||
scale_ndim = scale.ndim
|
||||
if scale.ndim == 2:
|
||||
scale = scale.unsqueeze(0)
|
||||
assert scale.ndim == 3
|
||||
B, M, K = scale.shape
|
||||
round_up_multiple = lambda x, m: (x + m - 1) // m * m
|
||||
M_padded = round_up_multiple(M, 128)
|
||||
K_padded = round_up_multiple(K, 4)
|
||||
padded_scale = torch.zeros((B, M_padded, K_padded), dtype=scale.dtype)
|
||||
padded_scale[:B, :M, :K] = scale
|
||||
batches, rows, cols = padded_scale.shape
|
||||
assert rows % 128 == 0
|
||||
assert cols % 4 == 0
|
||||
padded_scale = padded_scale.reshape(batches, rows // 128, 4, 32,
|
||||
cols // 4, 4)
|
||||
swizzled_scale = padded_scale.permute((0, 1, 4, 3, 2, 5))
|
||||
swizzled_scale = swizzled_scale.contiguous().cuda()
|
||||
return (swizzled_scale.reshape(M, K)
|
||||
if scale_ndim == 2 else swizzled_scale.reshape(B, M, K))
|
||||
|
||||
def process_weights_after_loading(self, layer: Module) -> None:
|
||||
|
||||
# global scales:
|
||||
input_scale_2 = layer.input_scale.max().to(torch.float32)
|
||||
layer.input_scale = Parameter(input_scale_2, requires_grad=False)
|
||||
|
||||
weight_scale_2 = layer.weight_scale_2.max().to(torch.float32)
|
||||
layer.weight_scale_2 = Parameter(weight_scale_2, requires_grad=False)
|
||||
|
||||
layer.alpha = Parameter(layer.input_scale * layer.weight_scale_2,
|
||||
requires_grad=False)
|
||||
|
||||
# Swizzle the weight blockscale.
|
||||
# contracting dimension is input dimension
|
||||
# block_size = 16;
|
||||
assert (layer.weight_scale.shape[1] % 16 == 0), (
|
||||
"Expected weight_scale.dim(1) to be divisible by 16")
|
||||
assert (layer.weight_scale.dtype == torch.float8_e4m3fn), (
|
||||
"Weight Block scale must be represented as FP8-E4M3")
|
||||
swizzled_weight_scale = self.swizzle_blockscale(layer.weight_scale)
|
||||
|
||||
layer.weight_scale_swizzled = Parameter(swizzled_weight_scale,
|
||||
requires_grad=False)
|
||||
|
||||
def apply(
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
bias: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
output_dtype = x.dtype
|
||||
|
||||
# for input only the contracting dimension has a constraint.
|
||||
x_m, _ = x.shape
|
||||
w_n, _ = layer.weight.shape
|
||||
output_shape = [x_m, w_n]
|
||||
|
||||
# quantize BF16 or FP16 to (FP4 and interleaved block scale)
|
||||
s_quant = 1 / layer.input_scale
|
||||
x_fp4, x_blockscale = scaled_fp4_quant(x, s_quant)
|
||||
|
||||
# validate dtypes of quantized input, input block scale,
|
||||
# weight and weight_blockscale
|
||||
assert (x_fp4.dtype == torch.uint8)
|
||||
assert (layer.weight.dtype == torch.uint8)
|
||||
assert (x_blockscale.dtype == torch.float8_e4m3fn)
|
||||
assert (layer.weight_scale_swizzled.dtype == torch.float8_e4m3fn)
|
||||
assert (layer.alpha.dtype == torch.float32)
|
||||
|
||||
out = cutlass_scaled_fp4_mm(x_fp4, layer.weight, x_blockscale,
|
||||
layer.weight_scale_swizzled, layer.alpha,
|
||||
output_dtype)
|
||||
if bias is not None:
|
||||
out = out + bias
|
||||
return out.view(*output_shape)
|
||||
|
Loading…
x
Reference in New Issue
Block a user