Write README and front page of doc (#147)
This commit is contained in:
parent
bf5f121c02
commit
dcda03b4cb
90
README.md
90
README.md
@ -1,66 +1,54 @@
|
||||
# vLLM
|
||||
# vLLM: Easy, Fast, and Cheap LLM Serving for Everyone
|
||||
|
||||
## Build from source
|
||||
| [**Documentation**](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/) | [**Blog**]() |
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
pip install -e . # This may take several minutes.
|
||||
```
|
||||
vLLM is a fast and easy-to-use library for LLM inference and serving.
|
||||
|
||||
## Test simple server
|
||||
## Latest News 🔥
|
||||
|
||||
```bash
|
||||
# Single-GPU inference.
|
||||
python examples/simple_server.py # --model <your_model>
|
||||
- [2023/06] We officially released vLLM! vLLM has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid April. Check out our [blog post]().
|
||||
|
||||
# Multi-GPU inference (e.g., 2 GPUs).
|
||||
ray start --head
|
||||
python examples/simple_server.py -tp 2 # --model <your_model>
|
||||
```
|
||||
## Getting Started
|
||||
|
||||
The detailed arguments for `simple_server.py` can be found by:
|
||||
```bash
|
||||
python examples/simple_server.py --help
|
||||
```
|
||||
Visit our [documentation](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/) to get started.
|
||||
- [Installation](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/getting_started/installation.html): `pip install vllm`
|
||||
- [Quickstart](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/getting_started/quickstart.html)
|
||||
- [Supported Models](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/models/supported_models.html)
|
||||
|
||||
## FastAPI server
|
||||
## Key Features
|
||||
|
||||
To start the server:
|
||||
```bash
|
||||
ray start --head
|
||||
python -m vllm.entrypoints.fastapi_server # --model <your_model>
|
||||
```
|
||||
vLLM comes with many powerful features that include:
|
||||
|
||||
To test the server:
|
||||
```bash
|
||||
python test_cli_client.py
|
||||
```
|
||||
- State-of-the-art performance in serving throughput
|
||||
- Efficient management of attention key and value memory with **PagedAttention**
|
||||
- Seamless integration with popular HuggingFace models
|
||||
- Dynamic batching of incoming requests
|
||||
- Optimized CUDA kernels
|
||||
- High-throughput serving with various decoding algorithms, including *parallel sampling* and *beam search*
|
||||
- Tensor parallelism support for distributed inference
|
||||
- Streaming outputs
|
||||
- OpenAI-compatible API server
|
||||
|
||||
## Gradio web server
|
||||
## Performance
|
||||
|
||||
Install the following additional dependencies:
|
||||
```bash
|
||||
pip install gradio
|
||||
```
|
||||
vLLM outperforms HuggingFace Transformers (HF) by up to 24x and Text Generation Inference (TGI) by up to 3.5x, in terms of throughput.
|
||||
For details, check out our [blog post]().
|
||||
|
||||
Start the server:
|
||||
```bash
|
||||
python -m vllm.http_frontend.fastapi_frontend
|
||||
# At another terminal
|
||||
python -m vllm.http_frontend.gradio_webserver
|
||||
```
|
||||
<p align="center">
|
||||
<img src="./assets/figures/perf_a10g_n1.png" width="45%">
|
||||
<img src="./assets/figures/perf_a100_n1.png" width="45%">
|
||||
<br>
|
||||
<em> Serving throughput when each request asks for 1 output completion. </em>
|
||||
</p>
|
||||
|
||||
## Load LLaMA weights
|
||||
<p align="center">
|
||||
<img src="./assets/figures/perf_a10g_n3.png" width="45%">
|
||||
<img src="./assets/figures/perf_a100_n3.png" width="45%">
|
||||
<br>
|
||||
<em> Serving throughput when each request asks for 3 output completions. </em>
|
||||
</p>
|
||||
|
||||
Since LLaMA weight is not fully public, we cannot directly download the LLaMA weights from huggingface. Therefore, you need to follow the following process to load the LLaMA weights.
|
||||
## Contributing
|
||||
|
||||
1. Converting LLaMA weights to huggingface format with [this script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py).
|
||||
```bash
|
||||
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
|
||||
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path/llama-7b
|
||||
```
|
||||
2. For all the commands above, specify the model with `--model /output/path/llama-7b` to load the model. For example:
|
||||
```bash
|
||||
python simple_server.py --model /output/path/llama-7b
|
||||
python -m vllm.http_frontend.fastapi_frontend --model /output/path/llama-7b
|
||||
```
|
||||
We welcome and value any contributions and collaborations.
|
||||
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
|
||||
|
BIN
assets/figures/perf_a100_n1.png
Normal file
BIN
assets/figures/perf_a100_n1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 357 KiB |
BIN
assets/figures/perf_a100_n3.png
Normal file
BIN
assets/figures/perf_a100_n3.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 343 KiB |
BIN
assets/figures/perf_a10g_n1.png
Normal file
BIN
assets/figures/perf_a10g_n1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 322 KiB |
BIN
assets/figures/perf_a10g_n3.png
Normal file
BIN
assets/figures/perf_a10g_n3.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 338 KiB |
@ -3,17 +3,20 @@
|
||||
Installation
|
||||
============
|
||||
|
||||
vLLM is a Python library that includes some C++ and CUDA code.
|
||||
vLLM can run on systems that meet the following requirements:
|
||||
vLLM is a Python library that also contains some C++ and CUDA code.
|
||||
This additional code requires compilation on the user's machine.
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
* OS: Linux
|
||||
* Python: 3.8 or higher
|
||||
* CUDA: 11.0 -- 11.8
|
||||
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, etc.)
|
||||
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, etc.)
|
||||
|
||||
.. note::
|
||||
As of now, vLLM does not support CUDA 12.
|
||||
If you are using Hopper or Lovelace GPUs, please use CUDA 11.8.
|
||||
If you are using Hopper or Lovelace GPUs, please use CUDA 11.8 instead of CUDA 12.
|
||||
|
||||
.. tip::
|
||||
If you have trouble installing vLLM, we recommend using the NVIDIA PyTorch Docker image.
|
||||
@ -45,7 +48,7 @@ You can install vLLM using pip:
|
||||
Build from source
|
||||
-----------------
|
||||
|
||||
You can also build and install vLLM from source.
|
||||
You can also build and install vLLM from source:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
|
@ -1,7 +1,21 @@
|
||||
Welcome to vLLM!
|
||||
================
|
||||
|
||||
vLLM is a high-throughput and memory-efficient inference and serving engine for large language models (LLM).
|
||||
**vLLM** is a fast and easy-to-use library for LLM inference and serving.
|
||||
Its core features include:
|
||||
|
||||
- State-of-the-art performance in serving throughput
|
||||
- Efficient management of attention key and value memory with **PagedAttention**
|
||||
- Seamless integration with popular HuggingFace models
|
||||
- Dynamic batching of incoming requests
|
||||
- Optimized CUDA kernels
|
||||
- High-throughput serving with various decoding algorithms, including *parallel sampling* and *beam search*
|
||||
- Tensor parallelism support for distributed inference
|
||||
- Streaming outputs
|
||||
- OpenAI-compatible API server
|
||||
|
||||
For more information, please refer to our `blog post <>`_.
|
||||
|
||||
|
||||
Documentation
|
||||
-------------
|
||||
|
@ -3,7 +3,7 @@
|
||||
Supported Models
|
||||
================
|
||||
|
||||
vLLM supports a variety of generative Transformer models in `HuggingFace Transformers <https://github.com/huggingface/transformers>`_.
|
||||
vLLM supports a variety of generative Transformer models in `HuggingFace Transformers <https://huggingface.co/models>`_.
|
||||
The following is the list of model architectures that are currently supported by vLLM.
|
||||
Alongside each architecture, we include some popular models that use it.
|
||||
|
||||
@ -18,7 +18,7 @@ Alongside each architecture, we include some popular models that use it.
|
||||
* - :code:`GPTNeoXForCausalLM`
|
||||
- GPT-NeoX, Pythia, OpenAssistant, Dolly V2, StableLM
|
||||
* - :code:`LlamaForCausalLM`
|
||||
- LLaMA, Vicuna, Alpaca, Koala
|
||||
- LLaMA, Vicuna, Alpaca, Koala, Guanaco
|
||||
* - :code:`OPTForCausalLM`
|
||||
- OPT, OPT-IML
|
||||
|
||||
|
2
setup.py
2
setup.py
@ -165,7 +165,7 @@ setuptools.setup(
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
],
|
||||
packages=setuptools.find_packages(
|
||||
exclude=("benchmarks", "csrc", "docs", "examples", "tests")),
|
||||
exclude=("assets", "benchmarks", "csrc", "docs", "examples", "tests")),
|
||||
python_requires=">=3.8",
|
||||
install_requires=get_requirements(),
|
||||
ext_modules=ext_modules,
|
||||
|
Loading…
x
Reference in New Issue
Block a user