parent
73030b7dae
commit
dbfe254eda
@ -2,8 +2,8 @@
|
|||||||
|
|
||||||
On the server side, run one of the following commands:
|
On the server side, run one of the following commands:
|
||||||
vLLM OpenAI API server
|
vLLM OpenAI API server
|
||||||
python -m vllm.entrypoints.openai.api_server \
|
vllm serve <your_model> \
|
||||||
--model <your_model> --swap-space 16 \
|
--swap-space 16 \
|
||||||
--disable-log-requests
|
--disable-log-requests
|
||||||
|
|
||||||
(TGI backend)
|
(TGI backend)
|
||||||
|
@ -109,7 +109,7 @@ directory [here](https://github.com/vllm-project/vllm/tree/main/examples/)
|
|||||||
|
|
||||||
```{argparse}
|
```{argparse}
|
||||||
:module: vllm.entrypoints.openai.cli_args
|
:module: vllm.entrypoints.openai.cli_args
|
||||||
:func: make_arg_parser
|
:func: create_parser_for_docs
|
||||||
:prog: -m vllm.entrypoints.openai.api_server
|
:prog: -m vllm.entrypoints.openai.api_server
|
||||||
```
|
```
|
||||||
|
|
||||||
|
5
setup.py
5
setup.py
@ -488,4 +488,9 @@ setup(
|
|||||||
},
|
},
|
||||||
cmdclass={"build_ext": cmake_build_ext} if _build_custom_ops() else {},
|
cmdclass={"build_ext": cmake_build_ext} if _build_custom_ops() else {},
|
||||||
package_data=package_data,
|
package_data=package_data,
|
||||||
|
entry_points={
|
||||||
|
"console_scripts": [
|
||||||
|
"vllm=vllm.scripts:main",
|
||||||
|
],
|
||||||
|
},
|
||||||
)
|
)
|
||||||
|
@ -14,7 +14,7 @@ import requests
|
|||||||
from vllm.distributed import (ensure_model_parallel_initialized,
|
from vllm.distributed import (ensure_model_parallel_initialized,
|
||||||
init_distributed_environment)
|
init_distributed_environment)
|
||||||
from vllm.entrypoints.openai.cli_args import make_arg_parser
|
from vllm.entrypoints.openai.cli_args import make_arg_parser
|
||||||
from vllm.utils import get_open_port, is_hip
|
from vllm.utils import FlexibleArgumentParser, get_open_port, is_hip
|
||||||
|
|
||||||
if is_hip():
|
if is_hip():
|
||||||
from amdsmi import (amdsmi_get_gpu_vram_usage,
|
from amdsmi import (amdsmi_get_gpu_vram_usage,
|
||||||
@ -57,7 +57,9 @@ class RemoteOpenAIServer:
|
|||||||
|
|
||||||
cli_args = cli_args + ["--port", str(get_open_port())]
|
cli_args = cli_args + ["--port", str(get_open_port())]
|
||||||
|
|
||||||
parser = make_arg_parser()
|
parser = FlexibleArgumentParser(
|
||||||
|
description="vLLM's remote OpenAI server.")
|
||||||
|
parser = make_arg_parser(parser)
|
||||||
args = parser.parse_args(cli_args)
|
args = parser.parse_args(cli_args)
|
||||||
self.host = str(args.host or 'localhost')
|
self.host = str(args.host or 'localhost')
|
||||||
self.port = int(args.port)
|
self.port = int(args.port)
|
||||||
|
@ -8,7 +8,7 @@ from typing import Optional, Set
|
|||||||
|
|
||||||
import fastapi
|
import fastapi
|
||||||
import uvicorn
|
import uvicorn
|
||||||
from fastapi import Request
|
from fastapi import APIRouter, Request
|
||||||
from fastapi.exceptions import RequestValidationError
|
from fastapi.exceptions import RequestValidationError
|
||||||
from fastapi.middleware.cors import CORSMiddleware
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
from fastapi.responses import JSONResponse, Response, StreamingResponse
|
from fastapi.responses import JSONResponse, Response, StreamingResponse
|
||||||
@ -35,10 +35,14 @@ from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
|
|||||||
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
|
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
|
||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
from vllm.usage.usage_lib import UsageContext
|
from vllm.usage.usage_lib import UsageContext
|
||||||
|
from vllm.utils import FlexibleArgumentParser
|
||||||
from vllm.version import __version__ as VLLM_VERSION
|
from vllm.version import __version__ as VLLM_VERSION
|
||||||
|
|
||||||
TIMEOUT_KEEP_ALIVE = 5 # seconds
|
TIMEOUT_KEEP_ALIVE = 5 # seconds
|
||||||
|
|
||||||
|
logger = init_logger(__name__)
|
||||||
|
engine: AsyncLLMEngine
|
||||||
|
engine_args: AsyncEngineArgs
|
||||||
openai_serving_chat: OpenAIServingChat
|
openai_serving_chat: OpenAIServingChat
|
||||||
openai_serving_completion: OpenAIServingCompletion
|
openai_serving_completion: OpenAIServingCompletion
|
||||||
openai_serving_embedding: OpenAIServingEmbedding
|
openai_serving_embedding: OpenAIServingEmbedding
|
||||||
@ -64,35 +68,23 @@ async def lifespan(app: fastapi.FastAPI):
|
|||||||
yield
|
yield
|
||||||
|
|
||||||
|
|
||||||
app = fastapi.FastAPI(lifespan=lifespan)
|
router = APIRouter()
|
||||||
|
|
||||||
|
|
||||||
def parse_args():
|
|
||||||
parser = make_arg_parser()
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
# Add prometheus asgi middleware to route /metrics requests
|
# Add prometheus asgi middleware to route /metrics requests
|
||||||
route = Mount("/metrics", make_asgi_app())
|
route = Mount("/metrics", make_asgi_app())
|
||||||
# Workaround for 307 Redirect for /metrics
|
# Workaround for 307 Redirect for /metrics
|
||||||
route.path_regex = re.compile('^/metrics(?P<path>.*)$')
|
route.path_regex = re.compile('^/metrics(?P<path>.*)$')
|
||||||
app.routes.append(route)
|
router.routes.append(route)
|
||||||
|
|
||||||
|
|
||||||
@app.exception_handler(RequestValidationError)
|
@router.get("/health")
|
||||||
async def validation_exception_handler(_, exc):
|
|
||||||
err = openai_serving_chat.create_error_response(message=str(exc))
|
|
||||||
return JSONResponse(err.model_dump(), status_code=HTTPStatus.BAD_REQUEST)
|
|
||||||
|
|
||||||
|
|
||||||
@app.get("/health")
|
|
||||||
async def health() -> Response:
|
async def health() -> Response:
|
||||||
"""Health check."""
|
"""Health check."""
|
||||||
await openai_serving_chat.engine.check_health()
|
await openai_serving_chat.engine.check_health()
|
||||||
return Response(status_code=200)
|
return Response(status_code=200)
|
||||||
|
|
||||||
|
|
||||||
@app.post("/tokenize")
|
@router.post("/tokenize")
|
||||||
async def tokenize(request: TokenizeRequest):
|
async def tokenize(request: TokenizeRequest):
|
||||||
generator = await openai_serving_completion.create_tokenize(request)
|
generator = await openai_serving_completion.create_tokenize(request)
|
||||||
if isinstance(generator, ErrorResponse):
|
if isinstance(generator, ErrorResponse):
|
||||||
@ -103,7 +95,7 @@ async def tokenize(request: TokenizeRequest):
|
|||||||
return JSONResponse(content=generator.model_dump())
|
return JSONResponse(content=generator.model_dump())
|
||||||
|
|
||||||
|
|
||||||
@app.post("/detokenize")
|
@router.post("/detokenize")
|
||||||
async def detokenize(request: DetokenizeRequest):
|
async def detokenize(request: DetokenizeRequest):
|
||||||
generator = await openai_serving_completion.create_detokenize(request)
|
generator = await openai_serving_completion.create_detokenize(request)
|
||||||
if isinstance(generator, ErrorResponse):
|
if isinstance(generator, ErrorResponse):
|
||||||
@ -114,19 +106,19 @@ async def detokenize(request: DetokenizeRequest):
|
|||||||
return JSONResponse(content=generator.model_dump())
|
return JSONResponse(content=generator.model_dump())
|
||||||
|
|
||||||
|
|
||||||
@app.get("/v1/models")
|
@router.get("/v1/models")
|
||||||
async def show_available_models():
|
async def show_available_models():
|
||||||
models = await openai_serving_completion.show_available_models()
|
models = await openai_serving_completion.show_available_models()
|
||||||
return JSONResponse(content=models.model_dump())
|
return JSONResponse(content=models.model_dump())
|
||||||
|
|
||||||
|
|
||||||
@app.get("/version")
|
@router.get("/version")
|
||||||
async def show_version():
|
async def show_version():
|
||||||
ver = {"version": VLLM_VERSION}
|
ver = {"version": VLLM_VERSION}
|
||||||
return JSONResponse(content=ver)
|
return JSONResponse(content=ver)
|
||||||
|
|
||||||
|
|
||||||
@app.post("/v1/chat/completions")
|
@router.post("/v1/chat/completions")
|
||||||
async def create_chat_completion(request: ChatCompletionRequest,
|
async def create_chat_completion(request: ChatCompletionRequest,
|
||||||
raw_request: Request):
|
raw_request: Request):
|
||||||
generator = await openai_serving_chat.create_chat_completion(
|
generator = await openai_serving_chat.create_chat_completion(
|
||||||
@ -142,7 +134,7 @@ async def create_chat_completion(request: ChatCompletionRequest,
|
|||||||
return JSONResponse(content=generator.model_dump())
|
return JSONResponse(content=generator.model_dump())
|
||||||
|
|
||||||
|
|
||||||
@app.post("/v1/completions")
|
@router.post("/v1/completions")
|
||||||
async def create_completion(request: CompletionRequest, raw_request: Request):
|
async def create_completion(request: CompletionRequest, raw_request: Request):
|
||||||
generator = await openai_serving_completion.create_completion(
|
generator = await openai_serving_completion.create_completion(
|
||||||
request, raw_request)
|
request, raw_request)
|
||||||
@ -156,7 +148,7 @@ async def create_completion(request: CompletionRequest, raw_request: Request):
|
|||||||
return JSONResponse(content=generator.model_dump())
|
return JSONResponse(content=generator.model_dump())
|
||||||
|
|
||||||
|
|
||||||
@app.post("/v1/embeddings")
|
@router.post("/v1/embeddings")
|
||||||
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
|
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
|
||||||
generator = await openai_serving_embedding.create_embedding(
|
generator = await openai_serving_embedding.create_embedding(
|
||||||
request, raw_request)
|
request, raw_request)
|
||||||
@ -167,8 +159,10 @@ async def create_embedding(request: EmbeddingRequest, raw_request: Request):
|
|||||||
return JSONResponse(content=generator.model_dump())
|
return JSONResponse(content=generator.model_dump())
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
def build_app(args):
|
||||||
args = parse_args()
|
app = fastapi.FastAPI(lifespan=lifespan)
|
||||||
|
app.include_router(router)
|
||||||
|
app.root_path = args.root_path
|
||||||
|
|
||||||
app.add_middleware(
|
app.add_middleware(
|
||||||
CORSMiddleware,
|
CORSMiddleware,
|
||||||
@ -178,6 +172,12 @@ if __name__ == "__main__":
|
|||||||
allow_headers=args.allowed_headers,
|
allow_headers=args.allowed_headers,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@app.exception_handler(RequestValidationError)
|
||||||
|
async def validation_exception_handler(_, exc):
|
||||||
|
err = openai_serving_chat.create_error_response(message=str(exc))
|
||||||
|
return JSONResponse(err.model_dump(),
|
||||||
|
status_code=HTTPStatus.BAD_REQUEST)
|
||||||
|
|
||||||
if token := envs.VLLM_API_KEY or args.api_key:
|
if token := envs.VLLM_API_KEY or args.api_key:
|
||||||
|
|
||||||
@app.middleware("http")
|
@app.middleware("http")
|
||||||
@ -203,6 +203,12 @@ if __name__ == "__main__":
|
|||||||
raise ValueError(f"Invalid middleware {middleware}. "
|
raise ValueError(f"Invalid middleware {middleware}. "
|
||||||
f"Must be a function or a class.")
|
f"Must be a function or a class.")
|
||||||
|
|
||||||
|
return app
|
||||||
|
|
||||||
|
|
||||||
|
def run_server(args, llm_engine=None):
|
||||||
|
app = build_app(args)
|
||||||
|
|
||||||
logger.info("vLLM API server version %s", VLLM_VERSION)
|
logger.info("vLLM API server version %s", VLLM_VERSION)
|
||||||
logger.info("args: %s", args)
|
logger.info("args: %s", args)
|
||||||
|
|
||||||
@ -211,10 +217,12 @@ if __name__ == "__main__":
|
|||||||
else:
|
else:
|
||||||
served_model_names = [args.model]
|
served_model_names = [args.model]
|
||||||
|
|
||||||
engine_args = AsyncEngineArgs.from_cli_args(args)
|
global engine, engine_args
|
||||||
|
|
||||||
engine = AsyncLLMEngine.from_engine_args(
|
engine_args = AsyncEngineArgs.from_cli_args(args)
|
||||||
engine_args, usage_context=UsageContext.OPENAI_API_SERVER)
|
engine = (llm_engine
|
||||||
|
if llm_engine is not None else AsyncLLMEngine.from_engine_args(
|
||||||
|
engine_args, usage_context=UsageContext.OPENAI_API_SERVER))
|
||||||
|
|
||||||
event_loop: Optional[asyncio.AbstractEventLoop]
|
event_loop: Optional[asyncio.AbstractEventLoop]
|
||||||
try:
|
try:
|
||||||
@ -230,6 +238,10 @@ if __name__ == "__main__":
|
|||||||
# When using single vLLM without engine_use_ray
|
# When using single vLLM without engine_use_ray
|
||||||
model_config = asyncio.run(engine.get_model_config())
|
model_config = asyncio.run(engine.get_model_config())
|
||||||
|
|
||||||
|
global openai_serving_chat
|
||||||
|
global openai_serving_completion
|
||||||
|
global openai_serving_embedding
|
||||||
|
|
||||||
openai_serving_chat = OpenAIServingChat(engine, model_config,
|
openai_serving_chat = OpenAIServingChat(engine, model_config,
|
||||||
served_model_names,
|
served_model_names,
|
||||||
args.response_role,
|
args.response_role,
|
||||||
@ -258,3 +270,13 @@ if __name__ == "__main__":
|
|||||||
ssl_certfile=args.ssl_certfile,
|
ssl_certfile=args.ssl_certfile,
|
||||||
ssl_ca_certs=args.ssl_ca_certs,
|
ssl_ca_certs=args.ssl_ca_certs,
|
||||||
ssl_cert_reqs=args.ssl_cert_reqs)
|
ssl_cert_reqs=args.ssl_cert_reqs)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# NOTE(simon):
|
||||||
|
# This section should be in sync with vllm/scripts.py for CLI entrypoints.
|
||||||
|
parser = FlexibleArgumentParser(
|
||||||
|
description="vLLM OpenAI-Compatible RESTful API server.")
|
||||||
|
parser = make_arg_parser(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
run_server(args)
|
||||||
|
@ -34,9 +34,7 @@ class PromptAdapterParserAction(argparse.Action):
|
|||||||
setattr(namespace, self.dest, adapter_list)
|
setattr(namespace, self.dest, adapter_list)
|
||||||
|
|
||||||
|
|
||||||
def make_arg_parser():
|
def make_arg_parser(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
|
||||||
parser = FlexibleArgumentParser(
|
|
||||||
description="vLLM OpenAI-Compatible RESTful API server.")
|
|
||||||
parser.add_argument("--host",
|
parser.add_argument("--host",
|
||||||
type=nullable_str,
|
type=nullable_str,
|
||||||
default=None,
|
default=None,
|
||||||
@ -133,3 +131,9 @@ def make_arg_parser():
|
|||||||
|
|
||||||
parser = AsyncEngineArgs.add_cli_args(parser)
|
parser = AsyncEngineArgs.add_cli_args(parser)
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def create_parser_for_docs() -> FlexibleArgumentParser:
|
||||||
|
parser_for_docs = FlexibleArgumentParser(
|
||||||
|
prog="-m vllm.entrypoints.openai.api_server")
|
||||||
|
return make_arg_parser(parser_for_docs)
|
||||||
|
154
vllm/scripts.py
Normal file
154
vllm/scripts.py
Normal file
@ -0,0 +1,154 @@
|
|||||||
|
# The CLI entrypoint to vLLM.
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import signal
|
||||||
|
import sys
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from openai import OpenAI
|
||||||
|
|
||||||
|
from vllm.entrypoints.openai.api_server import run_server
|
||||||
|
from vllm.entrypoints.openai.cli_args import make_arg_parser
|
||||||
|
from vllm.utils import FlexibleArgumentParser
|
||||||
|
|
||||||
|
|
||||||
|
def registrer_signal_handlers():
|
||||||
|
|
||||||
|
def signal_handler(sig, frame):
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
|
signal.signal(signal.SIGINT, signal_handler)
|
||||||
|
signal.signal(signal.SIGTSTP, signal_handler)
|
||||||
|
|
||||||
|
|
||||||
|
def serve(args: argparse.Namespace) -> None:
|
||||||
|
# EngineArgs expects the model name to be passed as --model.
|
||||||
|
args.model = args.model_tag
|
||||||
|
|
||||||
|
run_server(args)
|
||||||
|
|
||||||
|
|
||||||
|
def interactive_cli(args: argparse.Namespace) -> None:
|
||||||
|
registrer_signal_handlers()
|
||||||
|
|
||||||
|
base_url = args.url
|
||||||
|
api_key = args.api_key or os.environ.get("OPENAI_API_KEY", "EMPTY")
|
||||||
|
openai_client = OpenAI(api_key=api_key, base_url=base_url)
|
||||||
|
|
||||||
|
if args.model_name:
|
||||||
|
model_name = args.model_name
|
||||||
|
else:
|
||||||
|
available_models = openai_client.models.list()
|
||||||
|
model_name = available_models.data[0].id
|
||||||
|
|
||||||
|
print(f"Using model: {model_name}")
|
||||||
|
|
||||||
|
if args.command == "complete":
|
||||||
|
complete(model_name, openai_client)
|
||||||
|
elif args.command == "chat":
|
||||||
|
chat(args.system_prompt, model_name, openai_client)
|
||||||
|
|
||||||
|
|
||||||
|
def complete(model_name: str, client: OpenAI) -> None:
|
||||||
|
print("Please enter prompt to complete:")
|
||||||
|
while True:
|
||||||
|
input_prompt = input("> ")
|
||||||
|
|
||||||
|
completion = client.completions.create(model=model_name,
|
||||||
|
prompt=input_prompt)
|
||||||
|
output = completion.choices[0].text
|
||||||
|
print(output)
|
||||||
|
|
||||||
|
|
||||||
|
def chat(system_prompt: Optional[str], model_name: str,
|
||||||
|
client: OpenAI) -> None:
|
||||||
|
conversation = []
|
||||||
|
if system_prompt is not None:
|
||||||
|
conversation.append({"role": "system", "content": system_prompt})
|
||||||
|
|
||||||
|
print("Please enter a message for the chat model:")
|
||||||
|
while True:
|
||||||
|
input_message = input("> ")
|
||||||
|
message = {"role": "user", "content": input_message}
|
||||||
|
conversation.append(message)
|
||||||
|
|
||||||
|
chat_completion = client.chat.completions.create(model=model_name,
|
||||||
|
messages=conversation)
|
||||||
|
|
||||||
|
response_message = chat_completion.choices[0].message
|
||||||
|
output = response_message.content
|
||||||
|
|
||||||
|
conversation.append(response_message)
|
||||||
|
print(output)
|
||||||
|
|
||||||
|
|
||||||
|
def _add_query_options(
|
||||||
|
parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
|
||||||
|
parser.add_argument(
|
||||||
|
"--url",
|
||||||
|
type=str,
|
||||||
|
default="http://localhost:8000/v1",
|
||||||
|
help="url of the running OpenAI-Compatible RESTful API server")
|
||||||
|
parser.add_argument(
|
||||||
|
"--model-name",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help=("The model name used in prompt completion, default to "
|
||||||
|
"the first model in list models API call."))
|
||||||
|
parser.add_argument(
|
||||||
|
"--api-key",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help=(
|
||||||
|
"API key for OpenAI services. If provided, this api key "
|
||||||
|
"will overwrite the api key obtained through environment variables."
|
||||||
|
))
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = FlexibleArgumentParser(description="vLLM CLI")
|
||||||
|
subparsers = parser.add_subparsers(required=True)
|
||||||
|
|
||||||
|
serve_parser = subparsers.add_parser(
|
||||||
|
"serve",
|
||||||
|
help="Start the vLLM OpenAI Compatible API server",
|
||||||
|
usage="vllm serve <model_tag> [options]")
|
||||||
|
serve_parser.add_argument("model_tag",
|
||||||
|
type=str,
|
||||||
|
help="The model tag to serve")
|
||||||
|
serve_parser = make_arg_parser(serve_parser)
|
||||||
|
serve_parser.set_defaults(dispatch_function=serve)
|
||||||
|
|
||||||
|
complete_parser = subparsers.add_parser(
|
||||||
|
"complete",
|
||||||
|
help=("Generate text completions based on the given prompt "
|
||||||
|
"via the running API server"),
|
||||||
|
usage="vllm complete [options]")
|
||||||
|
_add_query_options(complete_parser)
|
||||||
|
complete_parser.set_defaults(dispatch_function=interactive_cli,
|
||||||
|
command="complete")
|
||||||
|
|
||||||
|
chat_parser = subparsers.add_parser(
|
||||||
|
"chat",
|
||||||
|
help="Generate chat completions via the running API server",
|
||||||
|
usage="vllm chat [options]")
|
||||||
|
_add_query_options(chat_parser)
|
||||||
|
chat_parser.add_argument(
|
||||||
|
"--system-prompt",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help=("The system prompt to be added to the chat template, "
|
||||||
|
"used for models that support system prompts."))
|
||||||
|
chat_parser.set_defaults(dispatch_function=interactive_cli, command="chat")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
# One of the sub commands should be executed.
|
||||||
|
if hasattr(args, "dispatch_function"):
|
||||||
|
args.dispatch_function(args)
|
||||||
|
else:
|
||||||
|
parser.print_help()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user