parent
73030b7dae
commit
dbfe254eda
@ -2,8 +2,8 @@
|
||||
|
||||
On the server side, run one of the following commands:
|
||||
vLLM OpenAI API server
|
||||
python -m vllm.entrypoints.openai.api_server \
|
||||
--model <your_model> --swap-space 16 \
|
||||
vllm serve <your_model> \
|
||||
--swap-space 16 \
|
||||
--disable-log-requests
|
||||
|
||||
(TGI backend)
|
||||
|
@ -109,7 +109,7 @@ directory [here](https://github.com/vllm-project/vllm/tree/main/examples/)
|
||||
|
||||
```{argparse}
|
||||
:module: vllm.entrypoints.openai.cli_args
|
||||
:func: make_arg_parser
|
||||
:func: create_parser_for_docs
|
||||
:prog: -m vllm.entrypoints.openai.api_server
|
||||
```
|
||||
|
||||
|
5
setup.py
5
setup.py
@ -488,4 +488,9 @@ setup(
|
||||
},
|
||||
cmdclass={"build_ext": cmake_build_ext} if _build_custom_ops() else {},
|
||||
package_data=package_data,
|
||||
entry_points={
|
||||
"console_scripts": [
|
||||
"vllm=vllm.scripts:main",
|
||||
],
|
||||
},
|
||||
)
|
||||
|
@ -14,7 +14,7 @@ import requests
|
||||
from vllm.distributed import (ensure_model_parallel_initialized,
|
||||
init_distributed_environment)
|
||||
from vllm.entrypoints.openai.cli_args import make_arg_parser
|
||||
from vllm.utils import get_open_port, is_hip
|
||||
from vllm.utils import FlexibleArgumentParser, get_open_port, is_hip
|
||||
|
||||
if is_hip():
|
||||
from amdsmi import (amdsmi_get_gpu_vram_usage,
|
||||
@ -57,7 +57,9 @@ class RemoteOpenAIServer:
|
||||
|
||||
cli_args = cli_args + ["--port", str(get_open_port())]
|
||||
|
||||
parser = make_arg_parser()
|
||||
parser = FlexibleArgumentParser(
|
||||
description="vLLM's remote OpenAI server.")
|
||||
parser = make_arg_parser(parser)
|
||||
args = parser.parse_args(cli_args)
|
||||
self.host = str(args.host or 'localhost')
|
||||
self.port = int(args.port)
|
||||
|
@ -8,7 +8,7 @@ from typing import Optional, Set
|
||||
|
||||
import fastapi
|
||||
import uvicorn
|
||||
from fastapi import Request
|
||||
from fastapi import APIRouter, Request
|
||||
from fastapi.exceptions import RequestValidationError
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.responses import JSONResponse, Response, StreamingResponse
|
||||
@ -35,10 +35,14 @@ from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
|
||||
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
|
||||
from vllm.logger import init_logger
|
||||
from vllm.usage.usage_lib import UsageContext
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
from vllm.version import __version__ as VLLM_VERSION
|
||||
|
||||
TIMEOUT_KEEP_ALIVE = 5 # seconds
|
||||
|
||||
logger = init_logger(__name__)
|
||||
engine: AsyncLLMEngine
|
||||
engine_args: AsyncEngineArgs
|
||||
openai_serving_chat: OpenAIServingChat
|
||||
openai_serving_completion: OpenAIServingCompletion
|
||||
openai_serving_embedding: OpenAIServingEmbedding
|
||||
@ -64,35 +68,23 @@ async def lifespan(app: fastapi.FastAPI):
|
||||
yield
|
||||
|
||||
|
||||
app = fastapi.FastAPI(lifespan=lifespan)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = make_arg_parser()
|
||||
return parser.parse_args()
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
# Add prometheus asgi middleware to route /metrics requests
|
||||
route = Mount("/metrics", make_asgi_app())
|
||||
# Workaround for 307 Redirect for /metrics
|
||||
route.path_regex = re.compile('^/metrics(?P<path>.*)$')
|
||||
app.routes.append(route)
|
||||
router.routes.append(route)
|
||||
|
||||
|
||||
@app.exception_handler(RequestValidationError)
|
||||
async def validation_exception_handler(_, exc):
|
||||
err = openai_serving_chat.create_error_response(message=str(exc))
|
||||
return JSONResponse(err.model_dump(), status_code=HTTPStatus.BAD_REQUEST)
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
@router.get("/health")
|
||||
async def health() -> Response:
|
||||
"""Health check."""
|
||||
await openai_serving_chat.engine.check_health()
|
||||
return Response(status_code=200)
|
||||
|
||||
|
||||
@app.post("/tokenize")
|
||||
@router.post("/tokenize")
|
||||
async def tokenize(request: TokenizeRequest):
|
||||
generator = await openai_serving_completion.create_tokenize(request)
|
||||
if isinstance(generator, ErrorResponse):
|
||||
@ -103,7 +95,7 @@ async def tokenize(request: TokenizeRequest):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
|
||||
@app.post("/detokenize")
|
||||
@router.post("/detokenize")
|
||||
async def detokenize(request: DetokenizeRequest):
|
||||
generator = await openai_serving_completion.create_detokenize(request)
|
||||
if isinstance(generator, ErrorResponse):
|
||||
@ -114,19 +106,19 @@ async def detokenize(request: DetokenizeRequest):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
|
||||
@app.get("/v1/models")
|
||||
@router.get("/v1/models")
|
||||
async def show_available_models():
|
||||
models = await openai_serving_completion.show_available_models()
|
||||
return JSONResponse(content=models.model_dump())
|
||||
|
||||
|
||||
@app.get("/version")
|
||||
@router.get("/version")
|
||||
async def show_version():
|
||||
ver = {"version": VLLM_VERSION}
|
||||
return JSONResponse(content=ver)
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions")
|
||||
@router.post("/v1/chat/completions")
|
||||
async def create_chat_completion(request: ChatCompletionRequest,
|
||||
raw_request: Request):
|
||||
generator = await openai_serving_chat.create_chat_completion(
|
||||
@ -142,7 +134,7 @@ async def create_chat_completion(request: ChatCompletionRequest,
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
|
||||
@app.post("/v1/completions")
|
||||
@router.post("/v1/completions")
|
||||
async def create_completion(request: CompletionRequest, raw_request: Request):
|
||||
generator = await openai_serving_completion.create_completion(
|
||||
request, raw_request)
|
||||
@ -156,7 +148,7 @@ async def create_completion(request: CompletionRequest, raw_request: Request):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
|
||||
@app.post("/v1/embeddings")
|
||||
@router.post("/v1/embeddings")
|
||||
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
|
||||
generator = await openai_serving_embedding.create_embedding(
|
||||
request, raw_request)
|
||||
@ -167,8 +159,10 @@ async def create_embedding(request: EmbeddingRequest, raw_request: Request):
|
||||
return JSONResponse(content=generator.model_dump())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
def build_app(args):
|
||||
app = fastapi.FastAPI(lifespan=lifespan)
|
||||
app.include_router(router)
|
||||
app.root_path = args.root_path
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
@ -178,6 +172,12 @@ if __name__ == "__main__":
|
||||
allow_headers=args.allowed_headers,
|
||||
)
|
||||
|
||||
@app.exception_handler(RequestValidationError)
|
||||
async def validation_exception_handler(_, exc):
|
||||
err = openai_serving_chat.create_error_response(message=str(exc))
|
||||
return JSONResponse(err.model_dump(),
|
||||
status_code=HTTPStatus.BAD_REQUEST)
|
||||
|
||||
if token := envs.VLLM_API_KEY or args.api_key:
|
||||
|
||||
@app.middleware("http")
|
||||
@ -203,6 +203,12 @@ if __name__ == "__main__":
|
||||
raise ValueError(f"Invalid middleware {middleware}. "
|
||||
f"Must be a function or a class.")
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def run_server(args, llm_engine=None):
|
||||
app = build_app(args)
|
||||
|
||||
logger.info("vLLM API server version %s", VLLM_VERSION)
|
||||
logger.info("args: %s", args)
|
||||
|
||||
@ -211,10 +217,12 @@ if __name__ == "__main__":
|
||||
else:
|
||||
served_model_names = [args.model]
|
||||
|
||||
engine_args = AsyncEngineArgs.from_cli_args(args)
|
||||
global engine, engine_args
|
||||
|
||||
engine = AsyncLLMEngine.from_engine_args(
|
||||
engine_args, usage_context=UsageContext.OPENAI_API_SERVER)
|
||||
engine_args = AsyncEngineArgs.from_cli_args(args)
|
||||
engine = (llm_engine
|
||||
if llm_engine is not None else AsyncLLMEngine.from_engine_args(
|
||||
engine_args, usage_context=UsageContext.OPENAI_API_SERVER))
|
||||
|
||||
event_loop: Optional[asyncio.AbstractEventLoop]
|
||||
try:
|
||||
@ -230,6 +238,10 @@ if __name__ == "__main__":
|
||||
# When using single vLLM without engine_use_ray
|
||||
model_config = asyncio.run(engine.get_model_config())
|
||||
|
||||
global openai_serving_chat
|
||||
global openai_serving_completion
|
||||
global openai_serving_embedding
|
||||
|
||||
openai_serving_chat = OpenAIServingChat(engine, model_config,
|
||||
served_model_names,
|
||||
args.response_role,
|
||||
@ -258,3 +270,13 @@ if __name__ == "__main__":
|
||||
ssl_certfile=args.ssl_certfile,
|
||||
ssl_ca_certs=args.ssl_ca_certs,
|
||||
ssl_cert_reqs=args.ssl_cert_reqs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# NOTE(simon):
|
||||
# This section should be in sync with vllm/scripts.py for CLI entrypoints.
|
||||
parser = FlexibleArgumentParser(
|
||||
description="vLLM OpenAI-Compatible RESTful API server.")
|
||||
parser = make_arg_parser(parser)
|
||||
args = parser.parse_args()
|
||||
run_server(args)
|
||||
|
@ -34,9 +34,7 @@ class PromptAdapterParserAction(argparse.Action):
|
||||
setattr(namespace, self.dest, adapter_list)
|
||||
|
||||
|
||||
def make_arg_parser():
|
||||
parser = FlexibleArgumentParser(
|
||||
description="vLLM OpenAI-Compatible RESTful API server.")
|
||||
def make_arg_parser(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
|
||||
parser.add_argument("--host",
|
||||
type=nullable_str,
|
||||
default=None,
|
||||
@ -133,3 +131,9 @@ def make_arg_parser():
|
||||
|
||||
parser = AsyncEngineArgs.add_cli_args(parser)
|
||||
return parser
|
||||
|
||||
|
||||
def create_parser_for_docs() -> FlexibleArgumentParser:
|
||||
parser_for_docs = FlexibleArgumentParser(
|
||||
prog="-m vllm.entrypoints.openai.api_server")
|
||||
return make_arg_parser(parser_for_docs)
|
||||
|
154
vllm/scripts.py
Normal file
154
vllm/scripts.py
Normal file
@ -0,0 +1,154 @@
|
||||
# The CLI entrypoint to vLLM.
|
||||
import argparse
|
||||
import os
|
||||
import signal
|
||||
import sys
|
||||
from typing import Optional
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
from vllm.entrypoints.openai.api_server import run_server
|
||||
from vllm.entrypoints.openai.cli_args import make_arg_parser
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
def registrer_signal_handlers():
|
||||
|
||||
def signal_handler(sig, frame):
|
||||
sys.exit(0)
|
||||
|
||||
signal.signal(signal.SIGINT, signal_handler)
|
||||
signal.signal(signal.SIGTSTP, signal_handler)
|
||||
|
||||
|
||||
def serve(args: argparse.Namespace) -> None:
|
||||
# EngineArgs expects the model name to be passed as --model.
|
||||
args.model = args.model_tag
|
||||
|
||||
run_server(args)
|
||||
|
||||
|
||||
def interactive_cli(args: argparse.Namespace) -> None:
|
||||
registrer_signal_handlers()
|
||||
|
||||
base_url = args.url
|
||||
api_key = args.api_key or os.environ.get("OPENAI_API_KEY", "EMPTY")
|
||||
openai_client = OpenAI(api_key=api_key, base_url=base_url)
|
||||
|
||||
if args.model_name:
|
||||
model_name = args.model_name
|
||||
else:
|
||||
available_models = openai_client.models.list()
|
||||
model_name = available_models.data[0].id
|
||||
|
||||
print(f"Using model: {model_name}")
|
||||
|
||||
if args.command == "complete":
|
||||
complete(model_name, openai_client)
|
||||
elif args.command == "chat":
|
||||
chat(args.system_prompt, model_name, openai_client)
|
||||
|
||||
|
||||
def complete(model_name: str, client: OpenAI) -> None:
|
||||
print("Please enter prompt to complete:")
|
||||
while True:
|
||||
input_prompt = input("> ")
|
||||
|
||||
completion = client.completions.create(model=model_name,
|
||||
prompt=input_prompt)
|
||||
output = completion.choices[0].text
|
||||
print(output)
|
||||
|
||||
|
||||
def chat(system_prompt: Optional[str], model_name: str,
|
||||
client: OpenAI) -> None:
|
||||
conversation = []
|
||||
if system_prompt is not None:
|
||||
conversation.append({"role": "system", "content": system_prompt})
|
||||
|
||||
print("Please enter a message for the chat model:")
|
||||
while True:
|
||||
input_message = input("> ")
|
||||
message = {"role": "user", "content": input_message}
|
||||
conversation.append(message)
|
||||
|
||||
chat_completion = client.chat.completions.create(model=model_name,
|
||||
messages=conversation)
|
||||
|
||||
response_message = chat_completion.choices[0].message
|
||||
output = response_message.content
|
||||
|
||||
conversation.append(response_message)
|
||||
print(output)
|
||||
|
||||
|
||||
def _add_query_options(
|
||||
parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
|
||||
parser.add_argument(
|
||||
"--url",
|
||||
type=str,
|
||||
default="http://localhost:8000/v1",
|
||||
help="url of the running OpenAI-Compatible RESTful API server")
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default=None,
|
||||
help=("The model name used in prompt completion, default to "
|
||||
"the first model in list models API call."))
|
||||
parser.add_argument(
|
||||
"--api-key",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"API key for OpenAI services. If provided, this api key "
|
||||
"will overwrite the api key obtained through environment variables."
|
||||
))
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
parser = FlexibleArgumentParser(description="vLLM CLI")
|
||||
subparsers = parser.add_subparsers(required=True)
|
||||
|
||||
serve_parser = subparsers.add_parser(
|
||||
"serve",
|
||||
help="Start the vLLM OpenAI Compatible API server",
|
||||
usage="vllm serve <model_tag> [options]")
|
||||
serve_parser.add_argument("model_tag",
|
||||
type=str,
|
||||
help="The model tag to serve")
|
||||
serve_parser = make_arg_parser(serve_parser)
|
||||
serve_parser.set_defaults(dispatch_function=serve)
|
||||
|
||||
complete_parser = subparsers.add_parser(
|
||||
"complete",
|
||||
help=("Generate text completions based on the given prompt "
|
||||
"via the running API server"),
|
||||
usage="vllm complete [options]")
|
||||
_add_query_options(complete_parser)
|
||||
complete_parser.set_defaults(dispatch_function=interactive_cli,
|
||||
command="complete")
|
||||
|
||||
chat_parser = subparsers.add_parser(
|
||||
"chat",
|
||||
help="Generate chat completions via the running API server",
|
||||
usage="vllm chat [options]")
|
||||
_add_query_options(chat_parser)
|
||||
chat_parser.add_argument(
|
||||
"--system-prompt",
|
||||
type=str,
|
||||
default=None,
|
||||
help=("The system prompt to be added to the chat template, "
|
||||
"used for models that support system prompts."))
|
||||
chat_parser.set_defaults(dispatch_function=interactive_cli, command="chat")
|
||||
|
||||
args = parser.parse_args()
|
||||
# One of the sub commands should be executed.
|
||||
if hasattr(args, "dispatch_function"):
|
||||
args.dispatch_function(args)
|
||||
else:
|
||||
parser.print_help()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user