[Bugfix] Fix missing post_layernorm
in CLIP (#8155)
This commit is contained in:
parent
a1d874224d
commit
da1a844e61
@ -355,6 +355,19 @@ class CLIPVisionTransformer(nn.Module):
|
||||
quant_config=quant_config,
|
||||
num_hidden_layers_override=num_hidden_layers_override)
|
||||
|
||||
if len(self.encoder.layers) > config.num_hidden_layers:
|
||||
raise ValueError(
|
||||
f"The original encoder only has {config.num_hidden_layers} "
|
||||
f"layers, but you requested {len(self.encoder.layers)} layers."
|
||||
)
|
||||
elif len(self.encoder.layers) == config.num_hidden_layers:
|
||||
self.post_layernorm = nn.LayerNorm(embed_dim,
|
||||
eps=config.layer_norm_eps)
|
||||
else:
|
||||
# post_layernorm is unused when we extract intermediate features
|
||||
# In this case, we can skip it to conserve memory
|
||||
self.post_layernorm = None
|
||||
|
||||
def forward(
|
||||
self,
|
||||
pixel_values: torch.Tensor,
|
||||
@ -364,7 +377,10 @@ class CLIPVisionTransformer(nn.Module):
|
||||
hidden_states = self.pre_layrnorm(hidden_states)
|
||||
hidden_states = self.encoder(inputs_embeds=hidden_states)
|
||||
|
||||
return hidden_states
|
||||
if self.post_layernorm is None:
|
||||
return hidden_states
|
||||
|
||||
return self.post_layernorm(hidden_states)
|
||||
|
||||
|
||||
class CLIPVisionModel(nn.Module):
|
||||
@ -386,9 +402,12 @@ class CLIPVisionModel(nn.Module):
|
||||
quant_config=quant_config,
|
||||
num_hidden_layers_override=num_hidden_layers_override)
|
||||
|
||||
def forward(self, pixel_values: Optional[torch.Tensor] = None):
|
||||
@property
|
||||
def _require_post_layernorm(self) -> bool:
|
||||
return self.vision_model.post_layernorm is not None
|
||||
|
||||
return self.vision_model(pixel_values=pixel_values)
|
||||
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
||||
return self.vision_model(pixel_values)
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
@ -408,8 +427,10 @@ class CLIPVisionModel(nn.Module):
|
||||
|
||||
for name, loaded_weight in weights:
|
||||
# post_layernorm is not needed in CLIPVisionModel
|
||||
if "vision_model.post_layernorm" in name:
|
||||
if ("vision_model.post_layernorm" in name
|
||||
and not self._require_post_layernorm):
|
||||
continue
|
||||
|
||||
# omit layers when num_hidden_layers_override is set
|
||||
if "vision_model.encoder.layers." in name:
|
||||
layer_idx = int(name.split(".")[3])
|
||||
|
@ -443,27 +443,26 @@ class SiglipVisionTransformer(nn.Module):
|
||||
self.config = config
|
||||
embed_dim = config.hidden_size
|
||||
|
||||
if (num_hidden_layers_override is None
|
||||
or num_hidden_layers_override == config.num_hidden_layers):
|
||||
self.need_post_layernorm = True
|
||||
elif num_hidden_layers_override > config.num_hidden_layers:
|
||||
raise ValueError(
|
||||
"num_hidden_layers_override cannot be greater than "
|
||||
"num_hidden_layers")
|
||||
else:
|
||||
self.need_post_layernorm = False
|
||||
|
||||
self.embeddings = SiglipVisionEmbeddings(config)
|
||||
self.encoder = SiglipEncoder(
|
||||
config,
|
||||
quant_config=quant_config,
|
||||
num_hidden_layers_override=num_hidden_layers_override,
|
||||
)
|
||||
if self.need_post_layernorm:
|
||||
|
||||
if len(self.encoder.layers) > config.num_hidden_layers:
|
||||
raise ValueError(
|
||||
f"The original encoder only has {config.num_hidden_layers} "
|
||||
f"layers, but you requested {len(self.encoder.layers)} layers."
|
||||
)
|
||||
elif len(self.encoder.layers) == config.num_hidden_layers:
|
||||
self.post_layernorm = nn.LayerNorm(embed_dim,
|
||||
eps=config.layer_norm_eps)
|
||||
else:
|
||||
self.post_layernorm = nn.Identity()
|
||||
# post_layernorm is unused when we extract intermediate features
|
||||
# In this case, we can skip it to conserve memory
|
||||
self.post_layernorm = None
|
||||
|
||||
self.use_head = (True if not hasattr(config, "vision_use_head") else
|
||||
config.vision_use_head)
|
||||
if self.use_head:
|
||||
@ -482,6 +481,9 @@ class SiglipVisionTransformer(nn.Module):
|
||||
|
||||
encoder_outputs = self.encoder(inputs_embeds=hidden_states)
|
||||
|
||||
if self.post_layernorm is None:
|
||||
return encoder_outputs
|
||||
|
||||
last_hidden_state = self.post_layernorm(encoder_outputs)
|
||||
# TODO: add this back when pooled_output is used in inference
|
||||
# if self.use_head:
|
||||
@ -512,8 +514,8 @@ class SiglipVisionModel(nn.Module):
|
||||
)
|
||||
|
||||
@property
|
||||
def need_post_layernorm(self):
|
||||
return self.vision_model.need_post_layernorm
|
||||
def _require_post_layernorm(self) -> bool:
|
||||
return self.vision_model.post_layernorm is not None
|
||||
|
||||
def get_input_embeddings(self) -> nn.Module:
|
||||
return self.vision_model.embeddings.patch_embedding
|
||||
@ -541,7 +543,7 @@ class SiglipVisionModel(nn.Module):
|
||||
for name, loaded_weight in weights:
|
||||
# post_layernorm is optional in SiglipVisionModel
|
||||
if ("vision_model.post_layernorm" in name
|
||||
and not self.need_post_layernorm):
|
||||
and not self._require_post_layernorm):
|
||||
continue
|
||||
|
||||
# omit layers when num_hidden_layers_override is set
|
||||
|
Loading…
x
Reference in New Issue
Block a user