[Frontend] Support tool calling and reasoning parser (#14511)

Signed-off-by: WangErXiao <863579016@qq.com>
This commit is contained in:
Robin 2025-03-24 05:00:07 +08:00 committed by GitHub
parent bc8ed3c4ba
commit d6cd59f122
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 555 additions and 63 deletions

View File

@ -118,7 +118,7 @@ steps:
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/correctness/
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/correctness/
- pytest -v -s entrypoints/test_chat_utils.py
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests

View File

@ -10,10 +10,10 @@ Reasoning models return a additional `reasoning_content` field in their outputs,
vLLM currently supports the following reasoning models:
| Model Series | Parser Name | Structured Output Support |
|--------------|-------------|------------------|
| [DeepSeek R1 series](https://huggingface.co/collections/deepseek-ai/deepseek-r1-678e1e131c0169c0bc89728d) | `deepseek_r1` | `guided_json`, `guided_regex` |
| [QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) | `deepseek_r1` | `guided_json`, `guided_regex` |
| Model Series | Parser Name | Structured Output Support | Tool Calling |
|--------------|-------------|------------------|-------------|
| [DeepSeek R1 series](https://huggingface.co/collections/deepseek-ai/deepseek-r1-678e1e131c0169c0bc89728d) | `deepseek_r1` | `guided_json`, `guided_regex` | ❌ |
| [QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) | `deepseek_r1` | `guided_json`, `guided_regex` | ✅ |
## Quickstart
@ -170,10 +170,51 @@ print("reasoning_content: ", completion.choices[0].message.reasoning_content)
print("content: ", completion.choices[0].message.content)
```
## Tool Calling
The reasoning content is also available when both tool calling and the reasoning parser are enabled. Additionally, tool calling only parses functions from the `content` field, not from the `reasoning_content`.
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
},
"required": ["location", "unit"]
}
}
}]
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
tools=tools,
tool_choice="auto"
)
print(response)
tool_call = response.choices[0].message.tool_calls[0].function
print(f"reasoning_content: {response.choices[0].message.reasoning_content}")
print(f"Function called: {tool_call.name}")
print(f"Arguments: {tool_call.arguments}")
```
For more examples, please refer to <gh-file:examples/online_serving/openai_chat_completion_tool_calls_with_reasoning.py> .
## Limitations
- The reasoning content is only available for online serving's chat completion endpoint (`/v1/chat/completions`).
- It is not compatible with [`tool_calling`](#tool_calling).
## How to support a new reasoning model

View File

@ -0,0 +1,177 @@
# SPDX-License-Identifier: Apache-2.0
"""
An example demonstrates how to use tool calling with reasoning models
like QwQ-32B. The reasoning_content will not be parsed by the tool
calling process; only the final output will be parsed.
To run this example, you need to start the vLLM server with both
the reasoning parser and tool calling enabled.
```bash
vllm serve Qwen/QwQ-32B \
--enable-reasoning --reasoning-parser deepseek_r1 \
--enable-auto-tool-choice --tool-call-parser hermes
```
"""
from openai import OpenAI
# Now, simulate a tool call
def get_current_weather(city: str, state: str, unit: 'str'):
return ("The weather in Dallas, Texas is 85 degrees fahrenheit. It is "
"partly cloudly, with highs in the 90's.")
available_tools = {"get_current_weather": get_current_weather}
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
tools = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for, e.g. 'San Francisco'"
},
"state": {
"type":
"string",
"description":
"the two-letter abbreviation for the state that the city is"
" in, e.g. 'CA' which would mean 'California'"
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["city", "state", "unit"]
}
}
}]
messages = [{
"role": "user",
"content": "Hi! How are you doing today?"
}, {
"role": "assistant",
"content": "I'm doing well! How can I help you?"
}, {
"role":
"user",
"content":
"Can you tell me what the temperate will be in Dallas, in fahrenheit?"
}]
def extract_reasoning_and_calls(chunks: list):
reasoning_content = ""
tool_call_idx = -1
arguments = []
function_names = []
for chunk in chunks:
if chunk.choices[0].delta.tool_calls:
tool_call = chunk.choices[0].delta.tool_calls[0]
if tool_call.index != tool_call_idx:
tool_call_idx = chunk.choices[0].delta.tool_calls[0].index
arguments.append("")
function_names.append("")
if tool_call.function:
if tool_call.function.name:
function_names[tool_call_idx] = tool_call.function.name
if tool_call.function.arguments:
arguments[tool_call_idx] += tool_call.function.arguments
else:
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content += chunk.choices[0].delta.reasoning_content
return reasoning_content, arguments, function_names
print("---------Full Generate With Automatic Function Calling-------------")
tool_calls = client.chat.completions.create(messages=messages,
model=model,
tools=tools)
print(f"reasoning_content: {tool_calls.choices[0].message.reasoning_content}")
print(f"function name: "
f"{tool_calls.choices[0].message.tool_calls[0].function.name}")
print(f"function arguments: "
f"{tool_calls.choices[0].message.tool_calls[0].function.arguments}")
print("----------Stream Generate With Automatic Function Calling-----------")
tool_calls_stream = client.chat.completions.create(messages=messages,
model=model,
tools=tools,
stream=True)
chunks = []
for chunk in tool_calls_stream:
chunks.append(chunk)
reasoning_content, arguments, function_names = extract_reasoning_and_calls(
chunks)
print(f"reasoning_content: {reasoning_content}")
print(f"function name: {function_names[0]}")
print(f"function arguments: {arguments[0]}")
print("----------Full Generate With Named Function Calling-----------------")
tool_calls = client.chat.completions.create(messages=messages,
model=model,
tools=tools,
tool_choice={
"type": "function",
"function": {
"name":
"get_current_weather"
}
})
tool_call = tool_calls.choices[0].message.tool_calls[0].function
print(f"reasoning_content: {tool_calls.choices[0].message.reasoning_content}")
print(f"function name: {tool_call.name}")
print(f"function arguments: {tool_call.arguments}")
print("----------Stream Generate With Named Function Calling--------------")
tool_calls_stream = client.chat.completions.create(
messages=messages,
model=model,
tools=tools,
tool_choice={
"type": "function",
"function": {
"name": "get_current_weather"
}
},
stream=True)
chunks = []
for chunk in tool_calls_stream:
chunks.append(chunk)
reasoning_content, arguments, function_names = extract_reasoning_and_calls(
chunks)
print(f"reasoning_content: {reasoning_content}")
print(f"function name: {function_names[0]}")
print(f"function arguments: {arguments[0]}")
print("\n\n")

View File

@ -0,0 +1,145 @@
# SPDX-License-Identifier: Apache-2.0
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
from ...utils import RemoteOpenAIServer
# a reasoning and tool calling model
MODEL_NAME = "Qwen/QwQ-32B"
@pytest.fixture(scope="module")
def server(): # noqa: F811
args = [
"--max-model-len", "8192", "--enforce-eager", "--enable-reasoning",
"--reasoning-parser", "deepseek_r1", "--enable-auto-tool-choice",
"--tool-call-parser", "hermes"
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
TOOLS = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for, e.g. 'San Francisco'"
},
"state": {
"type":
"string",
"description":
"the two-letter abbreviation for the state that the city is"
" in, e.g. 'CA' which would mean 'California'"
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["city", "state", "unit"]
}
}
}]
MESSAGES = [{
"role": "user",
"content": "Hi! How are you doing today?"
}, {
"role": "assistant",
"content": "I'm doing well! How can I help you?"
}, {
"role":
"user",
"content":
"Can you tell me what the temperate will be in Dallas, in fahrenheit?"
}]
FUNC_NAME = "get_current_weather"
FUNC_ARGS = """{"city": "Dallas", "state": "TX", "unit": "fahrenheit"}"""
def extract_reasoning_and_calls(chunks: list):
reasoning_content = ""
tool_call_idx = -1
arguments = []
function_names = []
for chunk in chunks:
if chunk.choices[0].delta.tool_calls:
tool_call = chunk.choices[0].delta.tool_calls[0]
if tool_call.index != tool_call_idx:
tool_call_idx = chunk.choices[0].delta.tool_calls[0].index
arguments.append("")
function_names.append("")
if tool_call.function:
if tool_call.function.name:
function_names[tool_call_idx] = tool_call.function.name
if tool_call.function.arguments:
arguments[tool_call_idx] += tool_call.function.arguments
else:
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content += chunk.choices[0].delta.reasoning_content
return reasoning_content, arguments, function_names
# test streaming
@pytest.mark.asyncio
async def test_chat_streaming_of_tool_and_reasoning(
client: openai.AsyncOpenAI):
stream = await client.chat.completions.create(
model=MODEL_NAME,
messages=MESSAGES,
tools=TOOLS,
temperature=0.0,
stream=True,
)
chunks = []
async for chunk in stream:
chunks.append(chunk)
reasoning_content, arguments, function_names = extract_reasoning_and_calls(
chunks)
assert len(reasoning_content) > 0
assert len(function_names) > 0 and function_names[0] == FUNC_NAME
assert len(arguments) > 0 and arguments[0] == FUNC_ARGS
# test full generate
@pytest.mark.asyncio
async def test_chat_full_of_tool_and_reasoning(client: openai.AsyncOpenAI):
tool_calls = await client.chat.completions.create(
model=MODEL_NAME,
messages=MESSAGES,
tools=TOOLS,
temperature=0.0,
stream=False,
)
assert len(tool_calls.choices[0].message.reasoning_content) > 0
assert tool_calls.choices[0].message.tool_calls[0].function.name \
== FUNC_NAME
assert tool_calls.choices[0].message.tool_calls[0].function.arguments \
== FUNC_ARGS

View File

@ -289,13 +289,6 @@ def validate_parsed_serve_args(args: argparse.Namespace):
raise TypeError("Error: --enable-reasoning requires "
"--reasoning-parser")
# Ref https://api-docs.deepseek.com/guides/reasoning_model
# tool call and reasoning cannot be enabled at the same time.
if args.enable_auto_tool_choice and args.enable_reasoning:
raise TypeError(
"Error: --enable-auto-tool-choice and "
"--enable-reasoning cannot be enabled at the same time")
def create_parser_for_docs() -> FlexibleArgumentParser:
parser_for_docs = FlexibleArgumentParser(

View File

@ -1,6 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
import os
from abc import abstractmethod
from collections.abc import Sequence
from functools import cached_property
from typing import Callable, Optional, Union
@ -76,6 +77,40 @@ class ReasoningParser:
"AbstractReasoningParser.extract_reasoning_content_streaming "
"has not been implemented!")
# TODO: need to rebase by PR #14428
@abstractmethod
def is_reasoning_end(self, input_ids: list[int]) -> bool:
"""
Check if the reasoning content ends in the input_ids.
Parameters:
input_ids: list[int]
The input_ids of the model output.
Returns:
bool
True if the reasoning content ends in the input_ids.
"""
raise NotImplementedError(
"AbstractReasoningParser.is_reasoning_end has"
"not been implemented!")
# TODO: need to rebase by PR #14428
@abstractmethod
def extract_content_ids(self, input_ids: list[int]) -> list[int]:
"""
Extract content token ids from the input_ids.
Parameters:
input_ids: list[int]
The input_ids of the model output.
Returns:
list[int]
The extracted content from the input_ids.
"""
raise NotImplementedError(
"AbstractReasoningParser.extract_content_ids has"
" not been implemented!")
class ReasoningParserManager:
reasoning_parsers: dict[str, type] = {}

View File

@ -45,6 +45,19 @@ class DeepSeekR1ReasoningParser(ReasoningParser):
"DeepSeek R1 reasoning parser could not locate think start/end "
"tokens in the tokenizer!")
# TODO: need to rebase by PR #14428
def is_reasoning_end(self, input_ids: list[int]) -> bool:
return self.think_end_token_id in input_ids
def extract_content_ids(self, input_ids: list[int]) -> list[int]:
"""
Extract the content after the end tokens
"""
if self.think_end_token_id not in input_ids[:-1]:
return []
else:
return input_ids[input_ids.index(self.think_end_token_id) + 1:]
def extract_reasoning_content_streaming(
self,
previous_text: str,

View File

@ -328,6 +328,9 @@ class OpenAIServingChat(OpenAIServing):
# These are only required in "auto" tool choice case
previous_texts = [""] * num_choices
all_previous_token_ids = [[]] * num_choices
# For reasoning parser and tool call all enabled
added_content_delta_arr = [False] * num_choices
reasoning_end_arr = [False] * num_choices
else:
previous_texts, all_previous_token_ids = None, None
@ -477,27 +480,116 @@ class OpenAIServingChat(OpenAIServing):
delta_message: Optional[DeltaMessage]
# handle streaming deltas for tools with named tool_choice
if tool_choice_function_name:
delta_message = DeltaMessage(tool_calls=[
DeltaToolCall(function=DeltaFunctionCall(
name=tool_choice_function_name,
arguments=delta_text),
index=i)
])
# handle streaming deltas for tools with "auto" tool choice
elif tool_choice_auto:
# just update previous_texts and previous_token_ids
if tool_choice_auto or should_stream_with_reasoning_parsing:
assert previous_texts is not None
assert all_previous_token_ids is not None
assert tool_parser is not None
#TODO optimize manipulation of these lists
previous_text = previous_texts[i]
previous_token_ids = all_previous_token_ids[i]
current_text = previous_text + delta_text
current_token_ids = previous_token_ids + list(
output.token_ids)
# handle streaming deltas for tools with named tool_choice
if tool_choice_function_name:
if (self.enable_reasoning
and not reasoning_parser.is_reasoning_end(
previous_token_ids)):
assert reasoning_parser is not None
delta_message = (
reasoning_parser.
extract_reasoning_content_streaming(
previous_text,
current_text,
delta_text,
previous_token_ids,
current_token_ids,
output.token_ids,
))
# When encountering think end id in delta_token_ids,
# process the `content`. Only keep 'content',
# remove 'reasoning_content'
if reasoning_parser.is_reasoning_end(
list(output.token_ids)):
if delta_message and delta_message.content:
# This need to be added to next `delta_text`
current_text = delta_message.content
delta_message.content = None
else:
current_text = ""
else:
# Just to add remaining `content`
if self.enable_reasoning:
delta_text = previous_text + delta_text
current_text = ""
delta_message = DeltaMessage(tool_calls=[
DeltaToolCall(function=DeltaFunctionCall(
name=tool_choice_function_name,
arguments=delta_text),
index=i)
])
# handle streaming deltas for tools with "auto" tool choice
# and reasoning parser
elif tool_choice_auto and self.enable_reasoning:
assert tool_parser is not None
assert reasoning_parser is not None
assert added_content_delta_arr is not None
assert reasoning_end_arr is not None
if not reasoning_end_arr[i]:
delta_message = (
reasoning_parser.
extract_reasoning_content_streaming(
previous_text,
current_text,
delta_text,
previous_token_ids,
current_token_ids,
output.token_ids,
))
# When encountering think end id in delta_token_ids,
# set reasoning status to end.
# Remove the text and token ids related
# to 'reasoning_content'.
if reasoning_parser.is_reasoning_end(
list(output.token_ids)):
reasoning_end_arr[i] = True
current_token_ids = \
reasoning_parser.extract_content_ids(
list(output.token_ids))
if delta_message and delta_message.content:
current_text = delta_message.content
delta_message.content = None
else:
current_text = ""
# handle tool calls only after reasoning is done,
else:
delta_token_ids = list(output.token_ids)
# First time to tool call,
# add the remaining text and token ids
# to delta from previous
if not added_content_delta_arr[i]:
added_content_delta_arr[i] = True
previous_text = ""
previous_token_ids = []
delta_text = current_text
delta_token_ids = current_token_ids
delta_message = (
tool_parser.extract_tool_calls_streaming(
previous_text=previous_text,
current_text=current_text,
delta_text=delta_text,
previous_token_ids=previous_token_ids,
current_token_ids=current_token_ids,
delta_token_ids=delta_token_ids,
request=request))
# when only tool calls
elif tool_choice_auto:
assert tool_parser is not None
delta_message = (
tool_parser.extract_tool_calls_streaming(
previous_text=previous_text,
@ -507,23 +599,9 @@ class OpenAIServingChat(OpenAIServing):
current_token_ids=current_token_ids,
delta_token_ids=output.token_ids,
request=request))
# update the previous values for the next iteration
previous_texts[i] = current_text
all_previous_token_ids[i] = current_token_ids
# reasoning_content cannot be enabled with tool_choice.
# If it is, the tool_choice will be used instead.
# when only reasoning
elif self.enable_reasoning:
# handle reasoning_content delta
assert reasoning_parser is not None
assert previous_texts is not None
assert all_previous_token_ids is not None
previous_text = previous_texts[i]
previous_token_ids = all_previous_token_ids[i]
current_text = previous_text + delta_text
current_token_ids = previous_token_ids + list(
output.token_ids)
delta_message = (reasoning_parser.
extract_reasoning_content_streaming(
previous_text,
@ -533,15 +611,17 @@ class OpenAIServingChat(OpenAIServing):
current_token_ids,
output.token_ids,
))
# update the previous values for the next iteration
previous_texts[i] = current_text
all_previous_token_ids[i] = current_token_ids
# handle streaming just a content delta
else:
delta_message = DeltaMessage(content=delta_text)
# update the previous values for the next iteration
if tool_choice_auto or should_stream_with_reasoning_parsing:
assert previous_texts is not None
assert all_previous_token_ids is not None
previous_texts[i] = current_text
all_previous_token_ids[i] = current_token_ids
# set the previous values for the next iteration
previous_num_tokens[i] += len(output.token_ids)
@ -739,24 +819,24 @@ class OpenAIServingChat(OpenAIServing):
except RuntimeError as e:
logger.exception("Error in reasoning parser creation.")
return self.create_error_response(str(e))
# If the reasoning parser is enabled,
# tool calls are extracted exclusively from the content.
reasoning_content, content = (
reasoning_parser.extract_reasoning_content(
output.text, request=request))
if reasoning_content:
message = ChatMessage(role=role,
content=content,
reasoning_content=reasoning_content)
else:
message = ChatMessage(role=role, content=output.text)
else:
reasoning_content = None
content = output.text
# if auto tools are not enabled, and a named tool choice using
# outlines is not being used
elif (not self.enable_auto_tools
or not self.tool_parser) and not isinstance(
request.tool_choice, ChatCompletionNamedToolChoiceParam):
message = ChatMessage(role=role, content=output.text)
if (not self.enable_auto_tools
or not self.tool_parser) and not isinstance(
request.tool_choice,
ChatCompletionNamedToolChoiceParam):
message = ChatMessage(role=role,
reasoning_content=reasoning_content,
content=content)
# if the request uses tools and specified a tool choice
elif request.tool_choice and type(
@ -766,18 +846,21 @@ class OpenAIServingChat(OpenAIServing):
tokenizer, MistralTokenizer) else ToolCall
message = ChatMessage(
role=role,
reasoning_content=reasoning_content,
content="",
tool_calls=[
tool_call_class(function=FunctionCall(
name=request.tool_choice.function.name,
arguments=output.text))
arguments=content))
])
# if the request doesn't use tool choice
# OR specifies to not use a tool
elif not request.tool_choice or request.tool_choice == "none":
message = ChatMessage(role=role, content=output.text)
message = ChatMessage(role=role,
reasoning_content=reasoning_content,
content=content)
# handle when there are tools and tool choice is auto
elif request.tools and (
@ -792,20 +875,23 @@ class OpenAIServingChat(OpenAIServing):
return self.create_error_response(str(e))
tool_call_info = tool_parser.extract_tool_calls(
output.text, request=request)
content if content is not None else "", request=request)
# In the OpenAI API the finish_reason is "tools_called"
# if the tool choice is auto and the model produced a tool
# call. The same is not true for named function calls
auto_tools_called = tool_call_info.tools_called
if tool_call_info.tools_called:
message = ChatMessage(role=role,
reasoning_content=reasoning_content,
content=tool_call_info.content,
tool_calls=tool_call_info.tool_calls)
else:
# FOR NOW make it a chat message; we will have to detect
# the type to make it later.
message = ChatMessage(role=role, content=output.text)
message = ChatMessage(role=role,
reasoning_content=reasoning_content,
content=content)
# undetermined case that is still important to handle
else:
@ -813,7 +899,9 @@ class OpenAIServingChat(OpenAIServing):
"Error in chat_completion_full_generator - cannot determine"
" if tools should be extracted. Returning a standard chat "
"completion.")
message = ChatMessage(role=role, content=output.text)
message = ChatMessage(role=role,
reasoning_content=reasoning_content,
content=content)
choice_data = ChatCompletionResponseChoice(
index=output.index,