[CI/Build] Fix VLM test failures when using transformers v4.46 (#9666)

This commit is contained in:
Cyrus Leung 2024-10-25 01:40:40 +08:00 committed by GitHub
parent d27cfbf791
commit c866e0079d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 28 additions and 12 deletions

View File

@ -232,20 +232,22 @@ def video_assets() -> _VideoAssets:
return VIDEO_ASSETS return VIDEO_ASSETS
_T = TypeVar("_T", nn.Module, torch.Tensor, BatchEncoding, BatchFeature) _T = TypeVar("_T", nn.Module, torch.Tensor, BatchEncoding, BatchFeature, dict)
class HfRunner: class HfRunner:
def wrap_device(self, input: _T, device: Optional[str] = None) -> _T: def wrap_device(self, x: _T, device: Optional[str] = None) -> _T:
if device is None: if device is None:
return self.wrap_device( device = "cpu" if current_platform.is_cpu() else "cuda"
input, "cpu" if current_platform.is_cpu() else "cuda")
if hasattr(input, "device") and input.device.type == device: if isinstance(x, dict):
return input return {k: self.wrap_device(v, device) for k, v in x.items()}
return input.to(device) if hasattr(x, "device") and x.device.type == device:
return x
return x.to(device)
def __init__( def __init__(
self, self,

View File

@ -1,6 +1,7 @@
from typing import List, Optional, Type from typing import List, Optional, Type
import pytest import pytest
import transformers
from transformers import AutoModelForVision2Seq, BatchEncoding from transformers import AutoModelForVision2Seq, BatchEncoding
from vllm.multimodal.utils import rescale_image_size from vllm.multimodal.utils import rescale_image_size
@ -93,6 +94,10 @@ def run_test(
) )
@pytest.mark.skipif(
transformers.__version__.startswith("4.46.0"),
reason="Model broken in HF, see huggingface/transformers#34379",
)
@pytest.mark.parametrize("model", models) @pytest.mark.parametrize("model", models)
@pytest.mark.parametrize( @pytest.mark.parametrize(
"size_factors", "size_factors",

View File

@ -32,8 +32,8 @@ HF_MULTIIMAGE_IMAGE_PROMPT = \
models = ["openbmb/MiniCPM-Llama3-V-2_5"] models = ["openbmb/MiniCPM-Llama3-V-2_5"]
def _wrap_inputs(hf_inputs: BatchEncoding) -> BatchEncoding: def _wrap_inputs(hf_inputs: BatchEncoding):
return BatchEncoding({"model_inputs": hf_inputs}) return {"model_inputs": hf_inputs}
def trunc_hf_output(hf_output: Tuple[List[int], str, def trunc_hf_output(hf_output: Tuple[List[int], str,

View File

@ -2,11 +2,12 @@ import os
from typing import List, Optional, Tuple, Type from typing import List, Optional, Tuple, Type
import pytest import pytest
from transformers import AutoConfig, AutoModelForVision2Seq, AutoTokenizer from transformers import (AutoConfig, AutoModelForVision2Seq, AutoTokenizer,
BatchEncoding)
from vllm.multimodal.utils import rescale_image_size from vllm.multimodal.utils import rescale_image_size
from vllm.sequence import SampleLogprobs from vllm.sequence import SampleLogprobs
from vllm.utils import is_hip from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, is_hip
from ....conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets from ....conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets
from ...utils import check_logprobs_close from ...utils import check_logprobs_close
@ -74,6 +75,7 @@ def run_test(
Note, the text input is also adjusted to abide by vllm contract. Note, the text input is also adjusted to abide by vllm contract.
The text output is sanitized to be able to compare with hf. The text output is sanitized to be able to compare with hf.
""" """
torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[dtype]
images = [asset.pil_image for asset in image_assets] images = [asset.pil_image for asset in image_assets]
inputs_per_image = [( inputs_per_image = [(
@ -100,7 +102,14 @@ def run_test(
for prompts, images in inputs_per_image for prompts, images in inputs_per_image
] ]
with hf_runner(model, dtype=dtype, def process(hf_inputs: BatchEncoding):
hf_inputs["pixel_values"] = hf_inputs["pixel_values"] \
.to(torch_dtype) # type: ignore
return hf_inputs
with hf_runner(model,
dtype=dtype,
postprocess_inputs=process,
auto_cls=AutoModelForVision2Seq) as hf_model: auto_cls=AutoModelForVision2Seq) as hf_model:
hf_outputs_per_image = [ hf_outputs_per_image = [
hf_model.generate_greedy_logprobs_limit(prompts, hf_model.generate_greedy_logprobs_limit(prompts,