[Model] Support multiple images for qwen-vl (#8247)

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
Alex Brooks 2024-09-12 11:10:54 -06:00 committed by GitHub
parent e56bf27741
commit c6202daeed
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 343 additions and 65 deletions

View File

@ -254,7 +254,7 @@ Multimodal Language Models
-
* - :code:`QWenLMHeadModel`
- Qwen-VL
- Image\ :sup:`E`
- Image\ :sup:`E+`
- :code:`Qwen/Qwen-VL`, :code:`Qwen/Qwen-VL-Chat`, etc.
-
* - :code:`Qwen2VLForConditionalGeneration`

View File

@ -19,7 +19,39 @@ IMAGE_URLS = [
]
def load_phi3v(question, image_urls: List[str]):
def load_qwenvl_chat(question: str, image_urls: List[str]):
model_name = "Qwen/Qwen-VL-Chat"
llm = LLM(
model=model_name,
trust_remote_code=True,
max_num_seqs=5,
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholders = "".join(f"Picture {i}: <img></img>\n"
for i, _ in enumerate(image_urls, start=1))
# This model does not have a chat_template attribute on its tokenizer,
# so we need to explicitly pass it. We use ChatML since it's used in the
# generation utils of the model:
# https://huggingface.co/Qwen/Qwen-VL-Chat/blob/main/qwen_generation_utils.py#L265
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
# Copied from: https://huggingface.co/docs/transformers/main/en/chat_templating
chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" # noqa: E501
messages = [{'role': 'user', 'content': f"{placeholders}\n{question}"}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True,
chat_template=chat_template)
stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>"]
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
return llm, prompt, stop_token_ids, None, chat_template
def load_phi3v(question: str, image_urls: List[str]):
llm = LLM(
model="microsoft/Phi-3.5-vision-instruct",
trust_remote_code=True,
@ -30,10 +62,10 @@ def load_phi3v(question, image_urls: List[str]):
for i, _ in enumerate(image_urls, start=1))
prompt = f"<|user|>\n{placeholders}\n{question}<|end|>\n<|assistant|>\n"
stop_token_ids = None
return llm, prompt, stop_token_ids, None
return llm, prompt, stop_token_ids, None, None
def load_internvl(question, image_urls: List[str]):
def load_internvl(question: str, image_urls: List[str]):
model_name = "OpenGVLab/InternVL2-2B"
llm = LLM(
@ -61,7 +93,7 @@ def load_internvl(question, image_urls: List[str]):
stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|end|>"]
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
return llm, prompt, stop_token_ids, None
return llm, prompt, stop_token_ids, None, None
def load_qwen2_vl(question, image_urls: List[str]):
@ -111,18 +143,19 @@ def load_qwen2_vl(question, image_urls: List[str]):
else:
image_data, _ = process_vision_info(messages)
return llm, prompt, stop_token_ids, image_data
return llm, prompt, stop_token_ids, image_data, None
model_example_map = {
"phi3_v": load_phi3v,
"internvl_chat": load_internvl,
"qwen2_vl": load_qwen2_vl,
"qwen_vl_chat": load_qwenvl_chat,
}
def run_generate(model, question: str, image_urls: List[str]):
llm, prompt, stop_token_ids, image_data = model_example_map[model](
llm, prompt, stop_token_ids, image_data, _ = model_example_map[model](
question, image_urls)
if image_data is None:
image_data = [fetch_image(url) for url in image_urls]
@ -146,29 +179,32 @@ def run_generate(model, question: str, image_urls: List[str]):
def run_chat(model: str, question: str, image_urls: List[str]):
llm, _, stop_token_ids, _ = model_example_map[model](question, image_urls)
llm, _, stop_token_ids, _, chat_template = model_example_map[model](
question, image_urls)
sampling_params = SamplingParams(temperature=0.0,
max_tokens=128,
stop_token_ids=stop_token_ids)
outputs = llm.chat([{
"role":
"user",
"content": [
{
"type": "text",
"text": question,
},
*({
"type": "image_url",
"image_url": {
"url": image_url
outputs = llm.chat(
[{
"role":
"user",
"content": [
{
"type": "text",
"text": question,
},
} for image_url in image_urls),
],
}],
sampling_params=sampling_params)
*({
"type": "image_url",
"image_url": {
"url": image_url
},
} for image_url in image_urls),
],
}],
sampling_params=sampling_params,
chat_template=chat_template,
)
for o in outputs:
generated_text = o.outputs[0].text

View File

@ -1,11 +1,17 @@
import pathlib
from typing import List, Optional, Type
from typing import Dict, List, Optional, Tuple, Type, Union
import pytest
import torch
from PIL.Image import Image
from vllm.multimodal.utils import rescale_image_size
from vllm.config import ModelConfig
from vllm.inputs import InputContext, LLMInputs
from vllm.multimodal.base import MultiModalInputs
from vllm.multimodal.utils import cached_get_tokenizer, rescale_image_size
from ..conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets
from ..conftest import (IMAGE_ASSETS, HfRunner, ImageAsset, PromptImageInput,
VllmRunner, _ImageAssets)
from .utils import check_logprobs_close
pytestmark = pytest.mark.vlm
@ -23,19 +29,205 @@ HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"Picture 1: <img></img>\nWhat is the season?: ",
})
HF_MULTIIMAGE_IMAGE_PROMPT = "Picture 1: <img></img>\nPicture 2: <img></img>\nCan you compare these images?\n" # noqa: E501
HF_MULTIIMAGE_IMAGE_PROMPT = "Picture 1: <img></img>\nPicture 2: <img></img>\nDescribe the two images in detail.\n" # noqa: E501
### Multimodal preprocessing tests
SAMPLE_IMAGE = IMAGE_ASSETS[0].pil_image
# These values are specific to Qwen-VL/Chat; we can get these from the model
# config also, but they are hardcoded here to keep the parameterize/fixtures
# easy to read.
IMG_START_ID = 151857
IMG_END_ID = 151858
IMG_PAD_ID = 151859
TOKS_PER_IMG = 256
VIS_ENC_DIM = 4096
IMG_SIZE = 448
def build_model_context(model_name: str,
tokenizer_name: Optional[str] = None,
trust_remote_code: bool = False):
"""Creates an InputContext for a given model.
Args:
model_name: Name of the model being considered.
tokenizer_name: Name of the tokenizer being considered.
trust_remote_code: Whether or not to allow loading remote code.
Returns:
InputContext for the model being considered.
"""
if tokenizer_name is None:
tokenizer_name = model_name
model_config = ModelConfig(
model_name,
tokenizer_name,
tokenizer_mode="auto",
trust_remote_code=trust_remote_code,
dtype="float32",
seed=0,
)
return InputContext(model_config)
@pytest.fixture()
def input_mapper_for_qwen():
# Lazy import to avoid initializing CUDA during test collection
from vllm.model_executor.models.qwen import input_mapper_for_qwen
return input_mapper_for_qwen
@pytest.fixture()
def input_processor_for_qwen():
# Lazy import to avoid initializing CUDA during test collection
from vllm.model_executor.models.qwen import input_processor_for_qwen
return input_processor_for_qwen
@pytest.fixture()
def qwen_vl_context() -> InputContext:
"""Get an InputContext for Qwen-VL."""
return build_model_context(model_name="Qwen/Qwen-VL",
trust_remote_code=True)
# Happy path tests for single/multi-image scenarios for the multimodal
# input processor and mapper, respectively
@pytest.mark.parametrize("num_images", [1, 2])
def test_input_processor_valid_mm_data(input_processor_for_qwen,
qwen_vl_context: InputContext,
num_images: int):
"""Happy cases for image inputs to Qwen's multimodal input processor."""
prompt = "".join(
[f"Picture {num}: <img></img>\n" for num in range(1, num_images + 1)])
inputs = LLMInputs(
prompt=prompt,
# When processing multimodal data for a multimodal model, the qwen
# input processor will overwrite the provided prompt_token_ids with
# the image prompts
prompt_token_ids=None,
multi_modal_data={"image": torch.rand(num_images, TOKS_PER_IMG, 4096)},
)
proc_inputs = input_processor_for_qwen(qwen_vl_context, inputs)
assert isinstance(proc_inputs, dict)
# Each image should have one start / stop and a fixed context of 256
proc_tokens = proc_inputs["prompt_token_ids"]
assert proc_tokens.count(IMG_START_ID) == num_images
assert proc_tokens.count(IMG_END_ID) == num_images
assert proc_tokens.count(IMG_PAD_ID) == num_images * TOKS_PER_IMG
@pytest.mark.parametrize(
"img_data,expected_shape",
[
# single / multi-image
(SAMPLE_IMAGE, (1, 3, IMG_SIZE, IMG_SIZE)),
(2 * [SAMPLE_IMAGE], (2, 3, IMG_SIZE, IMG_SIZE)),
# single / multi-image embeddings
(torch.rand(
(TOKS_PER_IMG, VIS_ENC_DIM)), (1, TOKS_PER_IMG, VIS_ENC_DIM)),
(torch.rand(
(1, TOKS_PER_IMG, VIS_ENC_DIM)), (1, TOKS_PER_IMG, VIS_ENC_DIM)),
(torch.rand(
(2, TOKS_PER_IMG, VIS_ENC_DIM)), (2, TOKS_PER_IMG, VIS_ENC_DIM)),
])
def test_input_mapper_valid_mm_data(input_mapper_for_qwen,
qwen_vl_context: InputContext,
img_data: Union[torch.Tensor, List[Image],
Image],
expected_shape: List[int]):
"""Happy cases for image inputs to Qwen's multimodal input mapper."""
mapped_img_data = input_mapper_for_qwen(qwen_vl_context, img_data)
# Ensure that we get the appropriately shaped pixel_values
# for images and image embeddings, respectively.
assert isinstance(mapped_img_data, MultiModalInputs)
assert "pixel_values" in mapped_img_data
assert mapped_img_data["pixel_values"].shape == expected_shape
# Sad path tests for the multimodal input processor and mapper, respectively
@pytest.mark.parametrize("mm_data", [
{
"image": torch.rand((5))
},
{
"image": torch.rand((5, 5, 5, 5, 5))
},
])
def test_input_processor_invalid_mm_data(input_processor_for_qwen,
qwen_vl_context: InputContext,
mm_data: Dict[str, torch.Tensor]):
"""Test sad cases validated in Qwen's multimodal input processor."""
tokenizer = cached_get_tokenizer(qwen_vl_context.model_config.tokenizer,
trust_remote_code=True)
prompt = "Picture 1: <img></img>\n"
prompt_token_ids = tokenizer.encode(prompt)
inputs = LLMInputs(prompt=prompt,
prompt_token_ids=prompt_token_ids,
multi_modal_data=mm_data)
# Should fail since we have too many or too few dimensions for embeddings
with pytest.raises(ValueError):
input_processor_for_qwen(qwen_vl_context, inputs)
@pytest.mark.parametrize(
"img_data",
[
# Wrong context length
torch.rand((1, TOKS_PER_IMG + 10, VIS_ENC_DIM)),
# Wrong visual encoder output size
torch.rand((1, TOKS_PER_IMG, VIS_ENC_DIM + 10)),
])
def test_input_mapper_invalid_mm_data(
input_mapper_for_qwen,
qwen_vl_context: InputContext,
img_data: Union[torch.Tensor, List[Image], Image],
):
"""Sad cases validated in Qwen VL's multimodal input mapper."""
with pytest.raises(ValueError):
input_mapper_for_qwen(qwen_vl_context, img_data)
### End-to-end generation tests
def get_prompt_with_path(tmp_path: pathlib.PosixPath, prompt: str,
assets: Union[_ImageAssets, List[ImageAsset]]) -> str:
"""Given a temporary dir path, export one or more image assets into the
tempdir & replace its contents with the local path to the string so that
the HF version of Qwen-VL can resolve the path and load the image ni its
forward() call.
Args:
tmp_path: Tempdir for test under consideration.
prompt: Prompt with image placeholders.
assets: List of image assets whose len equals the num placeholders.
"""
# Ensure that the number of placeholders matches the number of assets;
# If this is not true, the test is probably written incorrectly.
assert prompt.count("<img></img>") == len(assets)
# Replace the placeholders with local paths to the exported assets
for asset in assets:
image_tmp_path = tmp_path / f"{asset.name}.jpg"
asset.pil_image.save(image_tmp_path)
prompt = prompt.replace(
"<img></img>",
f"<img>{image_tmp_path}</img>",
1,
)
return prompt
### Tests for multimodal Qwen models
def run_test(
tmp_path: pathlib.PosixPath,
hf_runner: Type[HfRunner],
vllm_runner: Type[VllmRunner],
image_assets: _ImageAssets,
inputs: List[Tuple[List[str], PromptImageInput]],
model: str,
*,
size_factors: List[float],
dtype: str,
max_tokens: int,
num_logprobs: int,
mm_limit: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
):
@ -48,23 +240,6 @@ def run_test(
Note, the text input is also adjusted to abide by vllm contract.
The text output is sanitized to be able to compare with hf.
"""
images = [asset.pil_image for asset in image_assets]
# Export the images to a tempdir and substitute it into the hf prompt;
# the contents between <img>/</img> will be ignored by VLLM, but the
# transformers implementation for the visual transformer parses this to
# reload it in the forward call; the contents are treated as a URL or a
# local path.
for idx, asset in enumerate(image_assets):
image_tmp_path = tmp_path / f"{asset.name}.jpg"
asset.pil_image.save(image_tmp_path)
HF_IMAGE_PROMPTS[idx] = HF_IMAGE_PROMPTS[idx].replace(
"<img></img>", f"<img>{image_tmp_path}</img>")
inputs_per_image = [(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
@ -72,11 +247,12 @@ def run_test(
# will hurt multiprocessing backend with fork method (the default method).
# max_model_len should be greater than image_feature_size
# Qwen encodes images into a fixed content size of 256
# Qwen encodes each image into a fixed content size of 256
with vllm_runner(model,
max_model_len=300,
max_model_len=1024,
max_num_seqs=1,
dtype=dtype,
limit_mm_per_prompt={"image": mm_limit},
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True) as vllm_model:
@ -85,7 +261,7 @@ def run_test(
max_tokens,
num_logprobs=num_logprobs,
images=images)
for prompts, images in inputs_per_image
for prompts, images in inputs
]
with hf_runner(model, dtype=dtype) as hf_model:
@ -94,7 +270,7 @@ def run_test(
max_tokens,
num_logprobs=num_logprobs,
images=images)
for prompts, images in inputs_per_image
for prompts, images in inputs
]
for hf_outputs, vllm_outputs in zip(hf_outputs_per_image,
@ -125,19 +301,81 @@ def run_test(
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [8])
@pytest.mark.parametrize("num_logprobs", [5])
def test_multimodal_models(tmp_path, hf_runner, vllm_runner, image_assets,
model, size_factors, dtype, max_tokens,
num_logprobs) -> None:
def test_multimodal_models_single_image(tmp_path: pathlib.PosixPath,
hf_runner: Type[HfRunner],
vllm_runner: Type[VllmRunner],
image_assets: _ImageAssets, model: str,
size_factors: List[float], dtype: str,
max_tokens: int,
num_logprobs: int) -> None:
"""Tests multimodal models with single image prompts."""
images = [asset.pil_image for asset in image_assets]
prompts = [
get_prompt_with_path(tmp_path, prompt, [asset])
for prompt, asset in zip(HF_IMAGE_PROMPTS, image_assets)
]
inputs = [(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
) for image, prompt in zip(images, prompts)]
run_test(
tmp_path,
hf_runner,
vllm_runner,
image_assets,
inputs,
model,
size_factors=size_factors,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=1,
tensor_parallel_size=1,
)
@pytest.mark.parametrize("model", multimodal_models)
@pytest.mark.parametrize(
"size_factors",
[
# No image
[],
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.25, 0.5, 1.0],
],
)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
def test_multimodal_models_multi_image(tmp_path: pathlib.PosixPath,
hf_runner: Type[HfRunner],
vllm_runner: Type[VllmRunner],
image_assets: _ImageAssets, model: str,
size_factors: List[float], dtype: str,
max_tokens: int,
num_logprobs: int) -> None:
"""Tests multimodal models with multi-image prompts."""
images = [asset.pil_image for asset in image_assets]
# Put all of the images into one prompt.
prompt = get_prompt_with_path(tmp_path, HF_MULTIIMAGE_IMAGE_PROMPT,
image_assets)
inputs = [([prompt for _ in size_factors],
[[rescale_image_size(image, factor) for image in images]
for factor in size_factors])]
run_test(
hf_runner,
vllm_runner,
inputs,
model,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=2,
tensor_parallel_size=1,
)
@ -150,7 +388,7 @@ def test_multimodal_models(tmp_path, hf_runner, vllm_runner, image_assets,
@pytest.mark.parametrize("num_logprobs", [5])
def test_text_only_qwen_model_can_be_loaded_and_run(
vllm_runner: Type[VllmRunner],
example_prompts,
example_prompts: List[str],
model: str,
*,
dtype: str,

View File

@ -47,6 +47,7 @@ from vllm.multimodal.base import MultiModalInputs
from vllm.multimodal.utils import cached_get_tokenizer
from vllm.sequence import (VLLM_TOKEN_ID_ARRAY_TYPE, IntermediateTensors,
SequenceData)
from vllm.utils import is_list_of
from .utils import flatten_bn, is_pp_missing_parameter, make_layers
@ -684,9 +685,12 @@ def input_processor_for_qwen(ctx: InputContext,
raise ValueError(
f"Expected img embeds to be have 3 dimensions, got {num_dims}")
num_images = 1 if num_dims == 2 else image_data.shape[0]
else:
# TODO - handle multiple image inputs once the API is solidified
elif isinstance(image_data, Image.Image):
num_images = 1
elif is_list_of(image_data, Image.Image):
num_images = len(image_data)
else:
raise TypeError(f"Invalid image type: {type(image_data)}")
if prompt is None:
prompt = tokenizer.decode(prompt_token_ids)
@ -767,11 +771,11 @@ def input_mapper_for_qwen(ctx: InputContext, data: object) -> MultiModalInputs:
f"[# images, {MAX_QWEN_IMG_TOKENS}, {img_emb_size}], but "
f"received shape [{data.shape}]")
pixel_values = data
else:
transform = build_normalization_transform(image_size)
# TODO - handle multiple image inputs once the API is solidified
transformed_images = [transform(data)]
if not isinstance(data, (list, tuple)):
data = [data]
transformed_images = [transform(datum) for datum in data]
pixel_values = torch.stack(transformed_images, dim=0)
return MultiModalInputs({"pixel_values": pixel_values})