Integrate Marlin Kernels for Int4 GPTQ inference (#2497)

Co-authored-by: Robert Shaw <114415538+rib-2@users.noreply.github.com>
Co-authored-by: alexm <alexm@neuralmagic.com>
This commit is contained in:
Robert Shaw 2024-03-01 14:47:51 -06:00 committed by GitHub
parent 90fbf12540
commit c0c2335ce0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 1752 additions and 6 deletions

View File

@ -84,6 +84,15 @@ torch::Tensor awq_dequantize(
int split_k_iters, int split_k_iters,
int thx, int thx,
int thy); int thy);
torch::Tensor marlin_gemm(
torch::Tensor& a,
torch::Tensor& b_q_weight,
torch::Tensor& b_scales,
torch::Tensor& workspace,
int64_t size_m,
int64_t size_n,
int64_t size_k);
#endif #endif
void squeezellm_gemm( void squeezellm_gemm(

View File

@ -52,11 +52,13 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
&rotary_embedding, &rotary_embedding,
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key"); "Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
// Quantization ops // Quantization ops
#ifndef USE_ROCM #ifndef USE_ROCM
ops.def("awq_gemm", &awq_gemm, "Quantized GEMM for AWQ"); ops.def("awq_gemm", &awq_gemm, "Quantized GEMM for AWQ");
ops.def("marlin_gemm", &marlin_gemm, "Marlin Optimized Quantized GEMM for GPTQ");
ops.def("awq_dequantize", &awq_dequantize, "Dequantization for AWQ"); ops.def("awq_dequantize", &awq_dequantize, "Dequantization for AWQ");
#endif #endif
ops.def("gptq_gemm", &gptq_gemm, "Quantized GEMM for GPTQ"); ops.def("gptq_gemm", &gptq_gemm, "Quantized GEMM for GPTQ");
ops.def("gptq_shuffle", &gptq_shuffle, "Post processing for GPTQ"); ops.def("gptq_shuffle", &gptq_shuffle, "Post processing for GPTQ");
ops.def("squeezellm_gemm", &squeezellm_gemm, "Quantized GEMM for SqueezeLLM"); ops.def("squeezellm_gemm", &squeezellm_gemm, "Quantized GEMM for SqueezeLLM");

View File

@ -0,0 +1,209 @@
Contains code from https://github.com/IST-DASLab/marlin
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
------------------------------------------------------------------------------------
This product bundles various third-party components under other open source licenses.
This section summarizes those components and their licenses. See licenses/
for text of these licenses.

File diff suppressed because it is too large Load Diff

View File

@ -15,6 +15,7 @@ types-setuptools
pytest pytest
pytest-forked pytest-forked
pytest-asyncio pytest-asyncio
pytest-rerunfailures
httpx httpx
einops # required for MPT einops # required for MPT
openai openai

View File

@ -342,6 +342,8 @@ vllm_extension_sources = [
if _is_cuda(): if _is_cuda():
vllm_extension_sources.append("csrc/quantization/awq/gemm_kernels.cu") vllm_extension_sources.append("csrc/quantization/awq/gemm_kernels.cu")
vllm_extension_sources.append(
"csrc/quantization/marlin/marlin_cuda_kernel.cu")
vllm_extension_sources.append("csrc/custom_all_reduce.cu") vllm_extension_sources.append("csrc/custom_all_reduce.cu")
# Add MoE kernels. # Add MoE kernels.

View File

@ -199,6 +199,24 @@ class VllmRunner:
outputs.append((req_sample_output_ids, req_sample_output_strs)) outputs.append((req_sample_output_ids, req_sample_output_strs))
return outputs return outputs
def generate_w_logprobs(
self,
prompts: List[str],
sampling_params: SamplingParams,
) -> List[Tuple[List[int], str]]:
assert sampling_params.logprobs is not None
req_outputs = self.model.generate(prompts,
sampling_params=sampling_params)
outputs = []
for req_output in req_outputs:
for sample in req_output.outputs:
output_str = sample.text
output_ids = sample.token_ids
output_logprobs = sample.logprobs
outputs.append((output_ids, output_str, output_logprobs))
return outputs
def generate_greedy( def generate_greedy(
self, self,
prompts: List[str], prompts: List[str],
@ -209,6 +227,20 @@ class VllmRunner:
return [(output_ids[0], output_str[0]) return [(output_ids[0], output_str[0])
for output_ids, output_str in outputs] for output_ids, output_str in outputs]
def generate_greedy_logprobs(
self,
prompts: List[str],
max_tokens: int,
num_logprobs: int,
) -> List[Tuple[List[int], str]]:
greedy_logprobs_params = SamplingParams(temperature=0.0,
max_tokens=max_tokens,
logprobs=num_logprobs)
outputs = self.generate_w_logprobs(prompts, greedy_logprobs_params)
return [(output_ids, output_str, output_logprobs)
for output_ids, output_str, output_logprobs in outputs]
def generate_beam_search( def generate_beam_search(
self, self,
prompts: List[str], prompts: List[str],

View File

@ -0,0 +1,97 @@
"""Compare the outputs of a GPTQ model to a Marlin model.
Note: GPTQ and Marlin do not have bitwise correctness.
As a result, in this test, we just confirm that the top selected tokens of the
Marlin/GPTQ models are in the top 3 selections of each other.
Note: Marlin internally uses locks to synchronize the threads. This can
result in very slight nondeterminism for Marlin. As a result, we re-run the test
up to 3 times to see if we pass.
Run `pytest tests/models/test_marlin.py --forked`.
"""
import pytest
import torch
from dataclasses import dataclass
from vllm.model_executor.layers.quantization import _QUANTIZATION_CONFIG_REGISTRY
capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]
marlin_not_supported = (
capability < _QUANTIZATION_CONFIG_REGISTRY["marlin"].get_min_capability())
@dataclass
class ModelPair:
model_marlin: str
model_gptq: str
model_pairs = [
ModelPair(model_marlin="nm-testing/zephyr-beta-7b-marlin-g128",
model_gptq="nm-testing/zephyr-beta-7b-gptq-g128"),
ModelPair(model_marlin="robertgshaw2/zephyr-7b-beta-channelwise-marlin",
model_gptq="robertgshaw2/zephyr-7b-beta-channelwise-gptq"),
ModelPair(model_marlin="robertgshaw2/TinyLlama-1.1B-Chat-v1.0-g128-marlin",
model_gptq="robertgshaw2/TinyLlama-1.1B-Chat-v1.0-g128-gptq")
]
@pytest.mark.flaky(reruns=2)
@pytest.mark.skipif(marlin_not_supported,
reason="Marlin is not supported on this GPU type.")
@pytest.mark.parametrize("model_pair", model_pairs)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [3])
def test_models(
vllm_runner,
example_prompts,
model_pair: ModelPair,
dtype: str,
max_tokens: int,
num_logprobs: int,
) -> None:
marlin_model = vllm_runner(model_pair.model_marlin, dtype=dtype)
marlin_outputs = marlin_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
# Note: not sure why, but deleting just the model on Ada Lovelace
# does not free the GPU memory. On Ampere, deleting the just model
# frees the memory.
del marlin_model.model.llm_engine.driver_worker
del marlin_model
gptq_model = vllm_runner(model_pair.model_gptq, dtype=dtype)
gptq_outputs = gptq_model.generate_greedy_logprobs(example_prompts,
max_tokens,
num_logprobs)
# Note: not sure why, but deleting just the model on Ada Lovelace
# does not free the GPU memory. On Ampere, deleting the just model
# frees the memory.
del gptq_model.model.llm_engine.driver_worker
del gptq_model
# loop through the prompts
for prompt_idx in range(len(example_prompts)):
gptq_output_ids, gptq_output_str, gptq_logprobs = gptq_outputs[
prompt_idx]
marlin_output_ids, marlin_output_str, marlin_logprobs = marlin_outputs[
prompt_idx]
for idx, (gptq_output_id, marlin_output_id) in enumerate(
zip(gptq_output_ids, marlin_output_ids)):
# If sequence is not an exact match,
if marlin_output_id != gptq_output_id:
# Each predicted token must be in top 5 of the other's
assert gptq_output_id in marlin_logprobs[idx], (
f"Test{prompt_idx}:\nGPTQ:\t{gptq_output_str!r}\nMarlin:\t{marlin_output_str!r}"
)
assert marlin_output_id in gptq_logprobs[idx], (
f"Test{prompt_idx}:\nGPTQ:\t{gptq_output_str!r}\nMarlin:\t{marlin_output_str!r}"
)
# Break out since sequences will now diverge.
break

View File

@ -155,15 +155,21 @@ class ModelConfig:
self.tokenizer_mode = tokenizer_mode self.tokenizer_mode = tokenizer_mode
def _verify_quantization(self) -> None: def _verify_quantization(self) -> None:
supported_quantization = ["awq", "gptq", "squeezellm"] supported_quantization = ["awq", "gptq", "squeezellm", "marlin"]
rocm_not_supported_quantization = ["awq"] rocm_not_supported_quantization = ["awq", "marlin"]
if self.quantization is not None: if self.quantization is not None:
self.quantization = self.quantization.lower() self.quantization = self.quantization.lower()
# Parse quantization method from the HF model config, if available. # Parse quantization method from the HF model config, if available.
hf_quant_config = getattr(self.hf_config, "quantization_config", None) hf_quant_config = getattr(self.hf_config, "quantization_config", None)
if hf_quant_config is not None: if hf_quant_config is not None:
hf_quant_method = str(hf_quant_config["quant_method"]).lower() hf_quant_method = str(hf_quant_config["quant_method"]).lower()
# If the GPTQ model is serialized in marlin format, use marlin.
if (hf_quant_method == "gptq"
and "is_marlin_format" in hf_quant_config
and hf_quant_config["is_marlin_format"]):
hf_quant_method = "marlin"
if self.quantization is None: if self.quantization is None:
self.quantization = hf_quant_method self.quantization = hf_quant_method
elif self.quantization != hf_quant_method: elif self.quantization != hf_quant_method:
@ -183,7 +189,9 @@ class ModelConfig:
raise ValueError( raise ValueError(
f"{self.quantization} quantization is currently not supported " f"{self.quantization} quantization is currently not supported "
f"in ROCm.") f"in ROCm.")
logger.warning(f"{self.quantization} quantization is not fully " if self.quantization != "marlin":
logger.warning(
f"{self.quantization} quantization is not fully "
"optimized yet. The speed can be slower than " "optimized yet. The speed can be slower than "
"non-quantized models.") "non-quantized models.")

View File

@ -17,6 +17,14 @@ from vllm.logger import init_logger
logger = init_logger(__name__) logger = init_logger(__name__)
def adjust_marlin_shard(param, shard_size, shard_offset):
marlin_tile_size = getattr(param, "marlin_tile_size", None)
if marlin_tile_size is None:
return shard_size, shard_offset
return shard_size * marlin_tile_size, shard_offset * marlin_tile_size
class LinearMethodBase(ABC): class LinearMethodBase(ABC):
"""Base class for different (maybe quantized) linear methods.""" """Base class for different (maybe quantized) linear methods."""
@ -276,6 +284,11 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
if packed_dim == output_dim: if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor shard_offset = shard_offset // param.pack_factor
# If marlin, we need to adjust the offset and size to account for the tiling.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
loaded_weight_shard = loaded_weight.narrow( loaded_weight_shard = loaded_weight.narrow(
output_dim, shard_offset, shard_size) output_dim, shard_offset, shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id) self.weight_loader(param, loaded_weight_shard, shard_id)
@ -293,6 +306,11 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
if packed_dim == output_dim: if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor shard_offset = shard_offset // param.pack_factor
# If marlin, we need to adjust the offset and size to account for the tiling.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
param_data = param_data.narrow(output_dim, shard_offset, param_data = param_data.narrow(output_dim, shard_offset,
shard_size) shard_size)
start_idx = tp_rank * shard_size start_idx = tp_rank * shard_size
@ -372,6 +390,7 @@ class QKVParallelLinear(ColumnParallelLinear):
loaded_shard_id: Optional[str] = None): loaded_shard_id: Optional[str] = None):
param_data = param.data param_data = param.data
output_dim = getattr(param, "output_dim", None) output_dim = getattr(param, "output_dim", None)
if loaded_shard_id is None: if loaded_shard_id is None:
# Loaded weight is already packed. # Loaded weight is already packed.
if output_dim is None: if output_dim is None:
@ -393,6 +412,11 @@ class QKVParallelLinear(ColumnParallelLinear):
if packed_dim == output_dim: if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor shard_offset = shard_offset // param.pack_factor
# If marlin, we need to adjust the offset and size to account for the tiling.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
loaded_weight_shard = loaded_weight.narrow( loaded_weight_shard = loaded_weight.narrow(
output_dim, shard_offset, shard_size) output_dim, shard_offset, shard_size)
self.weight_loader(param, loaded_weight_shard, shard_id) self.weight_loader(param, loaded_weight_shard, shard_id)
@ -417,6 +441,11 @@ class QKVParallelLinear(ColumnParallelLinear):
if packed_dim == output_dim: if packed_dim == output_dim:
shard_size = shard_size // param.pack_factor shard_size = shard_size // param.pack_factor
shard_offset = shard_offset // param.pack_factor shard_offset = shard_offset // param.pack_factor
# If marlin, we need to adjust the offset and size to account for the tiling.
shard_size, shard_offset = adjust_marlin_shard(
param, shard_size, shard_offset)
param_data = param_data.narrow(output_dim, shard_offset, param_data = param_data.narrow(output_dim, shard_offset,
shard_size) shard_size)
if loaded_shard_id == "q": if loaded_shard_id == "q":

View File

@ -4,11 +4,13 @@ from vllm.model_executor.layers.quantization.base_config import QuantizationConf
from vllm.model_executor.layers.quantization.awq import AWQConfig from vllm.model_executor.layers.quantization.awq import AWQConfig
from vllm.model_executor.layers.quantization.gptq import GPTQConfig from vllm.model_executor.layers.quantization.gptq import GPTQConfig
from vllm.model_executor.layers.quantization.squeezellm import SqueezeLLMConfig from vllm.model_executor.layers.quantization.squeezellm import SqueezeLLMConfig
from vllm.model_executor.layers.quantization.marlin import MarlinConfig
_QUANTIZATION_CONFIG_REGISTRY = { _QUANTIZATION_CONFIG_REGISTRY = {
"awq": AWQConfig, "awq": AWQConfig,
"gptq": GPTQConfig, "gptq": GPTQConfig,
"squeezellm": SqueezeLLMConfig, "squeezellm": SqueezeLLMConfig,
"marlin": MarlinConfig,
} }

View File

@ -0,0 +1,210 @@
from typing import Any, Dict, List, Optional
import torch
from torch.nn.parameter import Parameter
from vllm._C import ops
from vllm.model_executor.layers.linear import LinearMethodBase, set_weight_attrs
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
class MarlinConfig(QuantizationConfig):
"""Config class for Marlin.
Reference: https://github.com/IST-DASLab/marlin/tree/master
"""
def __init__(
self,
group_size: int,
) -> None:
# Group size for the quantization.
self.group_size = group_size
if self.group_size != 128 and self.group_size != -1:
raise ValueError(
"Currently, only group size 128 and -1 (channelwise) is supported for "
f"Marlin, but got group_size of {self.group_size}")
# 4 Bits packed into 32 bit datatype.
self.pack_factor = 32 // 4
# Tile size used by marlin kernels.
self.tile_size = 16
# Min out_features dim
self.min_n_threads = 64
# Min in_features dim
self.min_k_threads = 128
# Max parallel problems to solve at once (improves large batch performance)
self.max_parallel = 16
# Permutation length used by the marlin kernels.
self.perm_len = 1024
def __repr__(self) -> str:
return f"MarlinConfig(group_size={self.group_size}"
@classmethod
def get_name(cls) -> str:
return "marlin"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.half]
@classmethod
# Need to figure it out
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> List[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "MarlinConfig":
group_size = cls.get_from_keys(config, ["group_size"])
return cls(group_size)
def get_linear_method(self) -> "MarlinLinearMethod":
return MarlinLinearMethod(self)
def get_scaled_act_names(self) -> List[str]:
return []
class MarlinLinearMethod(LinearMethodBase):
"""Linear method for Marlin.
Args:
quant_config: The Marlin quantization config.
"""
def __init__(self, quant_config: MarlinConfig):
self.quant_config = quant_config
def create_weights(
self,
input_size_per_partition: int,
output_size_per_partition: int,
input_size: int,
output_size: int,
params_dtype: torch.dtype,
) -> Dict[str, Any]:
del output_size # Unused.
if params_dtype != torch.float16:
raise ValueError(
f"The params dtype must be float16, but got {params_dtype}")
# Validate output_size_per_partition
if output_size_per_partition % self.quant_config.min_n_threads != 0:
raise ValueError(
f"Weight output_size_per_partition = {output_size_per_partition} is not divisible by min_n_threads = {self.quant_config.min_n_threads}."
)
if output_size_per_partition % self.quant_config.pack_factor != 0:
raise ValueError(
f"Weight output_size_per_partition = {output_size_per_partition} is not divisible by pack_factor = {self.quant_config.pack_factor}."
)
# Validate input_size_per_partition
if input_size_per_partition % self.quant_config.min_k_threads != 0:
raise ValueError(
f"Weight input_size_per_partition = {input_size_per_partition} is not divisible by min_k_threads = {self.quant_config.min_k_threads}."
)
if self.quant_config.group_size != -1 and input_size_per_partition % self.quant_config.group_size != 0:
raise ValueError(
f"Weight input_size_per_partition = f{input_size_per_partition} is not divisible by group_size = {self.quant_config.group_size}."
)
# Check that we have at least 4 tiles horizontally in the shard
num_tiles_per_perm = self.quant_config.perm_len // (
self.quant_config.tile_size**2)
if output_size_per_partition % num_tiles_per_perm != 0:
raise ValueError(
"Each permutation group must reside on the same gpu")
# Quantized 4Bit weights packed into Int32.
qweight = Parameter(
torch.empty(
input_size_per_partition // self.quant_config.tile_size,
output_size_per_partition * self.quant_config.tile_size //
self.quant_config.pack_factor,
device="cuda",
dtype=torch.int32,
),
requires_grad=False,
)
set_weight_attrs(
qweight,
{
"input_dim": 0,
"output_dim": 1,
"packed_dim": 1,
"pack_factor": self.quant_config.pack_factor,
"marlin_tile_size": self.quant_config.tile_size,
},
)
# Determine if channelwise or not
input_groups = 1 if self.quant_config.group_size == -1 else input_size_per_partition // self.quant_config.group_size
scales = Parameter(
torch.empty(
input_groups,
output_size_per_partition,
device="cuda",
dtype=params_dtype,
),
requires_grad=False,
)
set_weight_attrs(
scales,
{
"input_dim": None if input_groups == 1 else 0,
"output_dim": 1,
},
)
# Allocate workspace (Used for internal locking mechanism)
max_workspace_size = (
output_size_per_partition //
self.quant_config.min_n_threads) * self.quant_config.max_parallel
workspace = Parameter(torch.zeros(max_workspace_size,
device="cuda",
dtype=torch.int),
requires_grad=False)
return {
"B": qweight,
"s": scales,
"workspace": workspace,
}
def apply_weights(
self,
weights: Dict[str, Any],
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
qweight = weights["B"]
scales = weights["s"]
workspace = weights["workspace"]
x_2d = x.view(-1, x.shape[-1])
size_m = x_2d.shape[0]
size_k = x_2d.shape[1]
size_n = scales.shape[1]
output_2d = ops.marlin_gemm(x_2d, qweight, scales, workspace, size_m,
size_n, size_k)
output = output_2d.view(x.shape[:-1] + (output_2d.shape[1], ))
if bias is not None:
output.add_(bias) # In-place add
return output