Support starcoder2 architecture (#3089)
This commit is contained in:
parent
9289e577ec
commit
bfdcfa6a05
@ -78,6 +78,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
|
||||
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
|
||||
- Qwen2 (`Qwen/Qwen2-7B-beta`, `Qwen/Qwen-7B-Chat-beta`, etc.)
|
||||
- StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.)
|
||||
- Starcoder2(`bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc.)
|
||||
- Yi (`01-ai/Yi-6B`, `01-ai/Yi-34B`, etc.)
|
||||
|
||||
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
|
||||
|
@ -19,6 +19,7 @@ MODELS = [
|
||||
"microsoft/phi-2",
|
||||
"stabilityai/stablelm-3b-4e1t",
|
||||
"allenai/OLMo-1B",
|
||||
"bigcode/starcoder2-3b",
|
||||
]
|
||||
|
||||
|
||||
|
@ -45,6 +45,7 @@ _MODELS = {
|
||||
"RWForCausalLM": ("falcon", "FalconForCausalLM"),
|
||||
"StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"),
|
||||
"StableLmForCausalLM": ("stablelm", "StablelmForCausalLM"),
|
||||
"Starcoder2ForCausalLM": ("starcoder2", "Starcoder2ForCausalLM"),
|
||||
}
|
||||
|
||||
# Models not supported by ROCm.
|
||||
|
310
vllm/model_executor/models/starcoder2.py
Normal file
310
vllm/model_executor/models/starcoder2.py
Normal file
@ -0,0 +1,310 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" PyTorch Starcoder2 model."""
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.activation import get_act_fn
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
LinearMethodBase,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding, ParallelLMHead, DEFAULT_VOCAB_PADDING_SIZE)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import get_tensor_model_parallel_world_size
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.sequence import SamplerOutput
|
||||
|
||||
try:
|
||||
from transformers import Starcoder2Config
|
||||
except ImportError:
|
||||
# fallback to PretrainedConfig
|
||||
# NOTE: Please install transformers from source or use transformers>=4.39.0
|
||||
from transformers import PretrainedConfig as Starcoder2Config
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class Starcoder2Attention(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: Starcoder2Config,
|
||||
linear_method: Optional[LinearMethodBase] = None):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
|
||||
self.hidden_size = config.hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = config.num_attention_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = config.num_key_value_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.head_dim = self.hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = config.rope_theta
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
self.use_bias = config.use_bias
|
||||
self.sliding_window = config.sliding_window
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
self.hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=self.use_bias,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
self.hidden_size,
|
||||
bias=self.use_bias,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=self.max_position_embeddings,
|
||||
base=int(self.rope_theta),
|
||||
is_neox_style=True,
|
||||
)
|
||||
self.attn = PagedAttention(
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
sliding_window=self.sliding_window,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class Starcoder2MLP(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: Starcoder2Config,
|
||||
linear_method: Optional[LinearMethodBase] = None):
|
||||
super().__init__()
|
||||
self.c_fc = ColumnParallelLinear(
|
||||
config.hidden_size,
|
||||
config.intermediate_size,
|
||||
bias=config.use_bias,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.c_proj = RowParallelLinear(
|
||||
config.intermediate_size,
|
||||
config.hidden_size,
|
||||
bias=config.use_bias,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.act = get_act_fn(config.hidden_act,
|
||||
intermediate_size=config.intermediate_size)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states, _ = self.c_fc(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states, _ = self.c_proj(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Starcoder2DecoderLayer(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: Starcoder2Config,
|
||||
linear_method: Optional[LinearMethodBase] = None):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.self_attn = Starcoder2Attention(config,
|
||||
linear_method=linear_method)
|
||||
self.mlp = Starcoder2MLP(config, linear_method=linear_method)
|
||||
self.input_layernorm = nn.LayerNorm(config.hidden_size,
|
||||
eps=config.norm_epsilon)
|
||||
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
|
||||
eps=config.norm_epsilon)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
# Self Attention
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Starcoder2Model(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: Starcoder2Config,
|
||||
linear_method: Optional[LinearMethodBase] = None):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
# TODO: consider padding_idx (currently removed)
|
||||
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
|
||||
config.hidden_size)
|
||||
self.layers = nn.ModuleList([
|
||||
Starcoder2DecoderLayer(config, linear_method=linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states = layer(positions, hidden_states, kv_caches[i],
|
||||
input_metadata)
|
||||
hidden_states = self.norm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Starcoder2ForCausalLM(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: Starcoder2Config,
|
||||
linear_method: Optional[LinearMethodBase] = None):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.model = Starcoder2Model(config, linear_method=linear_method)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
if config.tie_word_embeddings:
|
||||
self.lm_head_weight = self.model.embed_tokens.weight
|
||||
else:
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
self.lm_head = ParallelLMHead(
|
||||
self.unpadded_vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
|
||||
)
|
||||
self.lm_head_weight = self.lm_head.weight
|
||||
self.sampler = Sampler(self.unpadded_vocab_size, config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
self,
|
||||
hidden_states: Optional[torch.Tensor],
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
load_format: str = "auto",
|
||||
revision: Optional[str] = None):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
]
|
||||
|
||||
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
@ -9,6 +9,7 @@ _CONFIG_REGISTRY = {
|
||||
"mpt": MPTConfig,
|
||||
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
|
||||
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)
|
||||
"starcoder2": Starcoder2Config,
|
||||
}
|
||||
|
||||
|
||||
@ -16,6 +17,15 @@ def get_config(model: str,
|
||||
trust_remote_code: bool,
|
||||
revision: Optional[str] = None,
|
||||
code_revision: Optional[str] = None) -> PretrainedConfig:
|
||||
# FIXME(woosuk): This is a temporary fix for StarCoder2.
|
||||
# Remove this when the model is supported by HuggingFace transformers.
|
||||
if "bigcode" in model and "starcoder2" in model:
|
||||
config_class = _CONFIG_REGISTRY["starcoder2"]
|
||||
config = config_class.from_pretrained(model,
|
||||
revision=revision,
|
||||
code_revision=code_revision)
|
||||
return config
|
||||
|
||||
try:
|
||||
config = AutoConfig.from_pretrained(
|
||||
model,
|
||||
|
@ -4,9 +4,11 @@ from vllm.transformers_utils.configs.mpt import MPTConfig
|
||||
# tiiuae/falcon-7b(-instruct) models. Newer Falcon models will use the
|
||||
# `FalconConfig` class from the official HuggingFace transformers library.
|
||||
from vllm.transformers_utils.configs.falcon import RWConfig
|
||||
from vllm.transformers_utils.configs.starcoder2 import Starcoder2Config
|
||||
|
||||
__all__ = [
|
||||
"ChatGLMConfig",
|
||||
"MPTConfig",
|
||||
"RWConfig",
|
||||
"Starcoder2Config",
|
||||
]
|
||||
|
127
vllm/transformers_utils/configs/starcoder2.py
Normal file
127
vllm/transformers_utils/configs/starcoder2.py
Normal file
@ -0,0 +1,127 @@
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
|
||||
class Starcoder2Config(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`Starcoder2Model`]. It is used to instantiate a
|
||||
Starcoder2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||||
with the defaults will yield a similar configuration to that of the [bigcode/starcoder2-7b_16k](https://huggingface.co/bigcode/starcoder2-7b_16k) model.
|
||||
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 49152):
|
||||
Vocabulary size of the Starcoder2 model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`Starcoder2Model`]
|
||||
hidden_size (`int`, *optional*, defaults to 3072):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 12288):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 30):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 24):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
num_key_value_heads (`int`, *optional*, defaults to 2):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
||||
The maximum sequence length that this model might ever be used with. Starcoder2's sliding window attention
|
||||
allows sequence of up to 4096*32 tokens.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
||||
Epsilon value for the layer norm
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
bos_token_id (`int`, *optional*, defaults to 50256):
|
||||
The id of the "beginning-of-sequence" token.
|
||||
eos_token_id (`int`, *optional*, defaults to 50256):
|
||||
The id of the "end-of-sequence" token.
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
sliding_window (`int`, *optional*):
|
||||
Sliding window attention window size. If not specified, will default to `None` (no sliding window).
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
residual_dropout (`float`, *optional*, defaults to 0.0):
|
||||
Residual connection dropout value.
|
||||
embedding_dropout (`float`, *optional*, defaults to 0.0):
|
||||
Embedding dropout.
|
||||
use_bias (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use bias term on linear layers of the model.
|
||||
|
||||
|
||||
```python
|
||||
>>> from transformers import Starcoder2Model, Starcoder2Config
|
||||
|
||||
>>> # Initializing a Starcoder2 7B style configuration
|
||||
>>> configuration = Starcoder2Config()
|
||||
|
||||
>>> # Initializing a model from the Starcoder2 7B style configuration
|
||||
>>> model = Starcoder2Model(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "starcoder2"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=49152,
|
||||
hidden_size=3072,
|
||||
intermediate_size=12288,
|
||||
num_hidden_layers=30,
|
||||
num_attention_heads=24,
|
||||
num_key_value_heads=2,
|
||||
hidden_act="gelu_pytorch_tanh",
|
||||
max_position_embeddings=4096,
|
||||
initializer_range=0.018042,
|
||||
norm_epsilon=1e-5,
|
||||
use_cache=True,
|
||||
bos_token_id=50256,
|
||||
eos_token_id=50256,
|
||||
rope_theta=10000.0,
|
||||
sliding_window=None,
|
||||
attention_dropout=0.0,
|
||||
residual_dropout=0.0,
|
||||
embedding_dropout=0.0,
|
||||
use_bias=True,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.sliding_window = sliding_window
|
||||
self.use_bias = use_bias
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.norm_epsilon = norm_epsilon
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.attention_dropout = attention_dropout
|
||||
self.residual_dropout = residual_dropout
|
||||
self.embedding_dropout = embedding_dropout
|
||||
|
||||
super().__init__(
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
**kwargs,
|
||||
)
|
||||
if self.architectures is None:
|
||||
self.architectures = ['Starcoder2ForCausalLM']
|
Loading…
x
Reference in New Issue
Block a user