Optimized topk for topk=1 (Llama-4) (#16512)

Signed-off-by: mgoin <mgoin64@gmail.com>
This commit is contained in:
Michael Goin 2025-04-12 00:21:08 -06:00 committed by GitHub
parent 802329dee9
commit bd6028d6b0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 11 additions and 2 deletions

View File

@ -37,7 +37,7 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from .llama import LlamaForCausalLM, LlamaMLP, LlamaModel
from .utils import (AutoWeightsLoader, extract_layer_index,
from .utils import (AutoWeightsLoader, extract_layer_index, fast_topk,
is_pp_missing_parameter)
@ -50,7 +50,7 @@ class Llama4MoE(nn.Module):
topk: int,
renormalize: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
router_scores, router_indices = torch.topk(gating_output, topk, dim=-1)
router_scores, router_indices = fast_topk(gating_output, topk, dim=-1)
router_scores = torch.sigmoid(router_scores.float()).to(
hidden_states.dtype)
return (router_scores, router_indices.to(torch.int32))

View File

@ -703,3 +703,12 @@ def cast_overflow_tensors(
clamp_value = torch.finfo(tensors.dtype).max - offset
tensors = torch.clamp(tensors, min=-clamp_value, max=clamp_value)
return tensors
def fast_topk(values, topk, dim):
if topk == 1:
# Use max along the specified dimension to get both value and index
return torch.max(values, dim=dim, keepdim=True)
else:
# Use topk for efficiency with larger k values
return torch.topk(values, topk, dim=dim)