[Bugfix] Fix vLLM UsageInfo and logprobs None AssertionError with empty token_ids (#9034)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
This commit is contained in:
parent
22f8a69549
commit
ba30942240
126
tests/entrypoints/openai/test_chunked_prompt.py
Normal file
126
tests/entrypoints/openai/test_chunked_prompt.py
Normal file
@ -0,0 +1,126 @@
|
||||
import openai # use the official client for correctness check
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from ...utils import RemoteOpenAIServer
|
||||
|
||||
# any model with a chat template should work here
|
||||
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def server():
|
||||
args = [
|
||||
# use half precision for speed and memory savings in CI environment
|
||||
"--dtype",
|
||||
"bfloat16",
|
||||
"--max-model-len",
|
||||
"8192",
|
||||
"--enforce-eager",
|
||||
# lora config below
|
||||
"--max-num-seqs",
|
||||
"128",
|
||||
"--enable-chunked-prefill",
|
||||
"--max-num-batched-tokens",
|
||||
"1000",
|
||||
# large prompts create a lot of output
|
||||
"--disable-log-requests",
|
||||
]
|
||||
|
||||
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
|
||||
yield remote_server
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def client(server):
|
||||
async with server.get_async_client() as async_client:
|
||||
yield async_client
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_completion_stream_options_and_logprobs_with_long_prompts(
|
||||
client: openai.AsyncOpenAI):
|
||||
# Test stream with long prompt
|
||||
prompt = "What is the capital of France?" * 400
|
||||
|
||||
stream = await client.completions.create(
|
||||
model=MODEL_NAME,
|
||||
prompt=prompt,
|
||||
max_tokens=5,
|
||||
temperature=0.0,
|
||||
stream=True,
|
||||
stream_options={
|
||||
"include_usage": True,
|
||||
"continuous_usage_stats": True,
|
||||
},
|
||||
logprobs=5,
|
||||
)
|
||||
|
||||
tokens_received = 0
|
||||
finished = False
|
||||
async for chunk in stream:
|
||||
assert chunk.usage.prompt_tokens >= 0
|
||||
assert chunk.usage.completion_tokens >= 0
|
||||
assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens +
|
||||
chunk.usage.completion_tokens)
|
||||
if not finished:
|
||||
tokens_received += 1
|
||||
assert chunk.choices[0].text
|
||||
|
||||
if chunk.choices[0].finish_reason is not None:
|
||||
finished = True
|
||||
|
||||
if finished:
|
||||
assert chunk.usage.completion_tokens == tokens_received
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_chat_completion_stream_options_and_logprobs_with_long_prompts(
|
||||
client: openai.AsyncOpenAI):
|
||||
# Test stream with long prompt
|
||||
messages = [{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
}, {
|
||||
"role": "user",
|
||||
"content": "What is the capital of France?" * 400
|
||||
}]
|
||||
stream = await client.chat.completions.create(
|
||||
model=MODEL_NAME,
|
||||
messages=messages,
|
||||
max_tokens=5,
|
||||
temperature=0.0,
|
||||
stream=True,
|
||||
stream_options={
|
||||
"include_usage": True,
|
||||
"continuous_usage_stats": True,
|
||||
},
|
||||
logprobs=True,
|
||||
top_logprobs=5,
|
||||
)
|
||||
|
||||
tokens_received = 0
|
||||
empty_chunks_received = 0
|
||||
finished = False
|
||||
async for chunk in stream:
|
||||
assert chunk.usage.prompt_tokens >= 0
|
||||
assert chunk.usage.completion_tokens >= 0
|
||||
assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens +
|
||||
chunk.usage.completion_tokens)
|
||||
|
||||
if not finished:
|
||||
if chunk.choices[0].delta.content == "":
|
||||
# when there is no tokens generated
|
||||
assert chunk.usage.completion_tokens == 0
|
||||
assert chunk.choices[0].logprobs is None
|
||||
empty_chunks_received += 1
|
||||
else:
|
||||
tokens_received += 1
|
||||
|
||||
if chunk.choices[0].finish_reason is not None:
|
||||
finished = True
|
||||
|
||||
if finished:
|
||||
assert chunk.usage.completion_tokens == tokens_received
|
||||
|
||||
assert empty_chunks_received <= 1
|
@ -435,6 +435,12 @@ class OpenAIServingChat(OpenAIServing):
|
||||
logprobs = None
|
||||
|
||||
delta_text = output.text
|
||||
|
||||
if not delta_text and not output.token_ids and \
|
||||
not previous_num_tokens[i]:
|
||||
# Chunked prefill case, don't return empty chunks
|
||||
continue
|
||||
|
||||
delta_message: Optional[DeltaMessage]
|
||||
|
||||
# handle streaming deltas for tools with named tool_choice
|
||||
|
@ -274,8 +274,6 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
|
||||
for output in res.outputs:
|
||||
i = output.index + prompt_idx * num_choices
|
||||
# TODO(simon): optimize the performance by avoiding full
|
||||
# text O(n^2) sending.
|
||||
|
||||
assert request.max_tokens is not None
|
||||
if request.echo and request.max_tokens == 0:
|
||||
@ -307,6 +305,11 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
delta_token_ids = output.token_ids
|
||||
out_logprobs = output.logprobs
|
||||
|
||||
if not delta_text and not delta_token_ids \
|
||||
and not previous_num_tokens[i]:
|
||||
# Chunked prefill case, don't return empty chunks
|
||||
continue
|
||||
|
||||
if request.logprobs is not None:
|
||||
assert out_logprobs is not None, (
|
||||
"Did not output logprobs")
|
||||
|
@ -532,6 +532,9 @@ class Sequence:
|
||||
# (which is what we have most of the time)
|
||||
return self.data._cached_all_token_ids[-1]
|
||||
|
||||
if num_new_tokens == 0:
|
||||
return []
|
||||
|
||||
return self.data._cached_all_token_ids[-num_new_tokens:]
|
||||
|
||||
def hash_of_block(self, logical_idx: int) -> int:
|
||||
|
Loading…
x
Reference in New Issue
Block a user