[Bugfix] Fix vLLM UsageInfo and logprobs None AssertionError with empty token_ids (#9034)

Co-authored-by: Nick Hill <nickhill@us.ibm.com>
This commit is contained in:
Chang Su 2024-10-15 15:40:43 -07:00 committed by GitHub
parent 22f8a69549
commit ba30942240
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 140 additions and 2 deletions

View File

@ -0,0 +1,126 @@
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
from ...utils import RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
@pytest.fixture(scope="module")
def server():
args = [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"--enforce-eager",
# lora config below
"--max-num-seqs",
"128",
"--enable-chunked-prefill",
"--max-num-batched-tokens",
"1000",
# large prompts create a lot of output
"--disable-log-requests",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
async def test_completion_stream_options_and_logprobs_with_long_prompts(
client: openai.AsyncOpenAI):
# Test stream with long prompt
prompt = "What is the capital of France?" * 400
stream = await client.completions.create(
model=MODEL_NAME,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=True,
stream_options={
"include_usage": True,
"continuous_usage_stats": True,
},
logprobs=5,
)
tokens_received = 0
finished = False
async for chunk in stream:
assert chunk.usage.prompt_tokens >= 0
assert chunk.usage.completion_tokens >= 0
assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens +
chunk.usage.completion_tokens)
if not finished:
tokens_received += 1
assert chunk.choices[0].text
if chunk.choices[0].finish_reason is not None:
finished = True
if finished:
assert chunk.usage.completion_tokens == tokens_received
@pytest.mark.asyncio
async def test_chat_completion_stream_options_and_logprobs_with_long_prompts(
client: openai.AsyncOpenAI):
# Test stream with long prompt
messages = [{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role": "user",
"content": "What is the capital of France?" * 400
}]
stream = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=5,
temperature=0.0,
stream=True,
stream_options={
"include_usage": True,
"continuous_usage_stats": True,
},
logprobs=True,
top_logprobs=5,
)
tokens_received = 0
empty_chunks_received = 0
finished = False
async for chunk in stream:
assert chunk.usage.prompt_tokens >= 0
assert chunk.usage.completion_tokens >= 0
assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens +
chunk.usage.completion_tokens)
if not finished:
if chunk.choices[0].delta.content == "":
# when there is no tokens generated
assert chunk.usage.completion_tokens == 0
assert chunk.choices[0].logprobs is None
empty_chunks_received += 1
else:
tokens_received += 1
if chunk.choices[0].finish_reason is not None:
finished = True
if finished:
assert chunk.usage.completion_tokens == tokens_received
assert empty_chunks_received <= 1

View File

@ -435,6 +435,12 @@ class OpenAIServingChat(OpenAIServing):
logprobs = None
delta_text = output.text
if not delta_text and not output.token_ids and \
not previous_num_tokens[i]:
# Chunked prefill case, don't return empty chunks
continue
delta_message: Optional[DeltaMessage]
# handle streaming deltas for tools with named tool_choice

View File

@ -274,8 +274,6 @@ class OpenAIServingCompletion(OpenAIServing):
for output in res.outputs:
i = output.index + prompt_idx * num_choices
# TODO(simon): optimize the performance by avoiding full
# text O(n^2) sending.
assert request.max_tokens is not None
if request.echo and request.max_tokens == 0:
@ -307,6 +305,11 @@ class OpenAIServingCompletion(OpenAIServing):
delta_token_ids = output.token_ids
out_logprobs = output.logprobs
if not delta_text and not delta_token_ids \
and not previous_num_tokens[i]:
# Chunked prefill case, don't return empty chunks
continue
if request.logprobs is not None:
assert out_logprobs is not None, (
"Did not output logprobs")

View File

@ -532,6 +532,9 @@ class Sequence:
# (which is what we have most of the time)
return self.data._cached_all_token_ids[-1]
if num_new_tokens == 0:
return []
return self.data._cached_all_token_ids[-num_new_tokens:]
def hash_of_block(self, logical_idx: int) -> int: