[Docs] Update installation page (#1005)
This commit is contained in:
parent
898285c9bf
commit
b9cecc2635
@ -3,31 +3,15 @@
|
|||||||
Installation
|
Installation
|
||||||
============
|
============
|
||||||
|
|
||||||
vLLM is a Python library that also contains some C++ and CUDA code.
|
vLLM is a Python library that also contains pre-compiled C++ and CUDA (11.8) binaries.
|
||||||
This additional code requires compilation on the user's machine.
|
|
||||||
|
|
||||||
Requirements
|
Requirements
|
||||||
------------
|
------------
|
||||||
|
|
||||||
* OS: Linux
|
* OS: Linux
|
||||||
* Python: 3.8 or higher
|
* Python: 3.8 -- 3.11
|
||||||
* CUDA: 11.0 -- 11.8
|
|
||||||
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, etc.)
|
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, etc.)
|
||||||
|
|
||||||
.. note::
|
|
||||||
As of now, vLLM does not support CUDA 12.
|
|
||||||
If you are using Hopper or Lovelace GPUs, please use CUDA 11.8 instead of CUDA 12.
|
|
||||||
|
|
||||||
.. tip::
|
|
||||||
If you have trouble installing vLLM, we recommend using the NVIDIA PyTorch Docker image.
|
|
||||||
|
|
||||||
.. code-block:: console
|
|
||||||
|
|
||||||
$ # Pull the Docker image with CUDA 11.8.
|
|
||||||
$ docker run --gpus all -it --rm --shm-size=8g nvcr.io/nvidia/pytorch:22.12-py3
|
|
||||||
|
|
||||||
Inside the Docker container, please execute :code:`pip uninstall torch` before installing vLLM.
|
|
||||||
|
|
||||||
Install with pip
|
Install with pip
|
||||||
----------------
|
----------------
|
||||||
|
|
||||||
@ -40,7 +24,7 @@ You can install vLLM using pip:
|
|||||||
$ conda activate myenv
|
$ conda activate myenv
|
||||||
|
|
||||||
$ # Install vLLM.
|
$ # Install vLLM.
|
||||||
$ pip install vllm # This may take 5-10 minutes.
|
$ pip install vllm
|
||||||
|
|
||||||
|
|
||||||
.. _build_from_source:
|
.. _build_from_source:
|
||||||
@ -55,3 +39,11 @@ You can also build and install vLLM from source:
|
|||||||
$ git clone https://github.com/vllm-project/vllm.git
|
$ git clone https://github.com/vllm-project/vllm.git
|
||||||
$ cd vllm
|
$ cd vllm
|
||||||
$ pip install -e . # This may take 5-10 minutes.
|
$ pip install -e . # This may take 5-10 minutes.
|
||||||
|
|
||||||
|
.. tip::
|
||||||
|
If you have trouble building vLLM, we recommend using the NVIDIA PyTorch Docker image.
|
||||||
|
|
||||||
|
.. code-block:: console
|
||||||
|
|
||||||
|
$ # Pull the Docker image with CUDA 11.8.
|
||||||
|
$ docker run --gpus all -it --rm --shm-size=8g nvcr.io/nvidia/pytorch:22.12-py3
|
||||||
|
Loading…
x
Reference in New Issue
Block a user