[Benchmark] Allow oversample request in benchmark dataset (#15170)

Signed-off-by: Jennifer Zhao <ai.jenniferzhao@gmail.com>
This commit is contained in:
Jennifer Zhao 2025-03-19 21:32:58 -07:00 committed by GitHub
parent d8c6d7d6b5
commit b88be22165
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 139 additions and 59 deletions

View File

@ -42,7 +42,7 @@ become available.
</tr>
<tr>
<td><strong>HuggingFace</strong></td>
<td style="text-align: center;"></td>
<td style="text-align: center;">🟡</td>
<td style="text-align: center;">🟡</td>
<td>Specify your dataset path on HuggingFace</td>
</tr>
@ -60,8 +60,8 @@ become available.
🚧: to be supported
🟡: Partial support. Currently, HuggingFaceDataset only supports dataset formats
similar to `lmms-lab/LLaVA-OneVision-Data`. If you need support for other dataset
formats, please consider contributing.
similar to `lmms-lab/LLaVA-OneVision-Data` and `Aeala/ShareGPT_Vicuna_unfiltered`.
If you need support for other dataset formats, please consider contributing.
**Note**: VisionArenas `dataset-name` should be set to `hf`
@ -139,6 +139,57 @@ python3 vllm/benchmarks/benchmark_serving.py \
--num-prompts "${NUM_PROMPTS}"
```
### HuggingFaceDataset Examples
Currently, HuggingFaceDataset only supports dataset formats
similar to `lmms-lab/LLaVA-OneVision-Data` and `Aeala/ShareGPT_Vicuna_unfiltered`. If you need support for other dataset
formats, please consider contributing.
```bash
# need a model with vision capability here
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
```
**`lmms-lab/LLaVA-OneVision-Data`**
```bash
MODEL_NAME="Qwen/Qwen2-VL-7B-Instruct"
NUM_PROMPTS=10
BACKEND="openai-chat"
DATASET_NAME="hf"
DATASET_PATH="lmms-lab/LLaVA-OneVision-Data"
DATASET_SPLIT='train'
DATASET_SUBSET='chart2text(cauldron)'
python3 vllm/benchmarks/benchmark_serving.py \
--backend "${BACKEND}" \
--model "${MODEL_NAME}" \
--endpoint "/v1/chat/completions" \
--dataset-name "${DATASET_NAME}" \
--dataset-path "${DATASET_PATH}" \
--hf-split "${DATASET_SPLIT}" \
--num-prompts "${NUM_PROMPTS}" \
--hf-subset "${DATASET_SUBSET}"
```
**`Aeala/ShareGPT_Vicuna_unfiltered`**
```bash
MODEL_NAME="Qwen/Qwen2-VL-7B-Instruct"
NUM_PROMPTS=10
BACKEND="openai-chat"
DATASET_NAME="hf"
DATASET_PATH="Aeala/ShareGPT_Vicuna_unfiltered"
DATASET_SPLIT='train'
python3 vllm/benchmarks/benchmark_serving.py \
--backend "${BACKEND}" \
--model "${MODEL_NAME}" \
--endpoint "/v1/chat/completions" \
--dataset-name "${DATASET_NAME}" \
--dataset-path "${DATASET_PATH}" \
--hf-split "${DATASET_SPLIT}" \
--num-prompts "${NUM_PROMPTS}" \
```
---
## Example - Offline Throughput Benchmark

View File

@ -17,6 +17,7 @@ SampleRequest instances, similar to the approach used in ShareGPT.
import base64
import io
import json
import logging
import random
from abc import ABC, abstractmethod
from collections.abc import Mapping
@ -35,6 +36,8 @@ from vllm.lora.utils import get_adapter_absolute_path
from vllm.multimodal import MultiModalDataDict
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
logger = logging.getLogger(__name__)
# -----------------------------------------------------------------------------
# Data Classes
# -----------------------------------------------------------------------------
@ -61,9 +64,6 @@ class SampleRequest:
class BenchmarkDataset(ABC):
DEFAULT_SEED = 0
# num_requests has default 1000 in both the benchmark_serving.py and
# benchmark_throughput.py
def __init__(
self,
dataset_path: Optional[str] = None,
@ -90,8 +90,8 @@ class BenchmarkDataset(ABC):
mm_content: Optional[MultiModalDataDict] = None) -> list[dict]:
"""
Transform a prompt and optional multimodal content into a chat format.
This method is used for chat models that expect a specific
conversation format.
This method is used for chat models that expect a specific conversation
format.
"""
content = [{"text": prompt, "type": "text"}]
if mm_content is not None:
@ -101,10 +101,10 @@ class BenchmarkDataset(ABC):
def load_data(self) -> None:
"""
Load data from the dataset path into self.data.
This method must be overridden by subclasses since the method to load
data will vary depending on the dataset format and source.
Raises:
NotImplementedError: If a subclass does not implement this method.
"""
@ -121,18 +121,18 @@ class BenchmarkDataset(ABC):
"""
Optionally select a random LoRA request and return its associated
tokenizer.
This method is used when LoRA parameters are provided. It randomly
selects a LoRA based on max_loras and retrieves a cached tokenizer for
that LoRA if available. Otherwise, it returns the base tokenizer.
Args:
tokenizer (PreTrainedTokenizerBase): The base tokenizer to use if no
LoRA is selected. max_loras (Optional[int]): The maximum number of
LoRAs available. If None, LoRA is not used. lora_path
(Optional[str]): Path to the LoRA parameters on disk. If None, LoRA
is not used.
Returns:
tuple[Optional[LoRARequest], AnyTokenizer]: A tuple where the first
element is a LoRARequest (or None if not applicable) and the second
@ -160,21 +160,39 @@ class BenchmarkDataset(ABC):
num_requests: int) -> list[SampleRequest]:
"""
Abstract method to generate sample requests from the dataset.
Subclasses must override this method to implement dataset-specific logic
for generating a list of SampleRequest objects.
Args:
tokenizer (PreTrainedTokenizerBase): The tokenizer to be used
for processing the dataset's text.
num_requests (int): The number of sample requests to generate.
Returns:
list[SampleRequest]: A list of sample requests generated from the
dataset.
"""
raise NotImplementedError("sample must be implemented in subclasses.")
def maybe_oversample_requests(self, requests: list[SampleRequest],
num_requests: int) -> None:
"""
Oversamples the list of requests if its size is less than the desired
number.
Args:
requests (List[SampleRequest]): The current list of sampled
requests. num_requests (int): The target number of requests.
"""
if len(requests) < num_requests:
random.seed(self.random_seed)
additional = random.choices(requests,
k=num_requests - len(requests))
requests.extend(additional)
logger.info("Oversampled requests to reach %d total samples.",
num_requests)
# -----------------------------------------------------------------------------
# Utility Functions and Global Caches
@ -276,15 +294,16 @@ class RandomDataset(BenchmarkDataset):
) -> None:
super().__init__(**kwargs)
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
range_ratio: float = DEFAULT_RANGE_RATIO,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
**kwargs) -> list[SampleRequest]:
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
range_ratio: float = DEFAULT_RANGE_RATIO,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
**kwargs,
) -> list[SampleRequest]:
vocab_size = tokenizer.vocab_size
prefix_token_ids = (np.random.randint(
@ -346,20 +365,24 @@ class ShareGPTDataset(BenchmarkDataset):
random.seed(self.random_seed)
random.shuffle(self.data)
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs) -> list:
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
samples: list = []
for entry in self.data:
if len(samples) >= num_requests:
break
prompt, completion = entry["conversations"][0]["value"],\
entry["conversations"][1]["value"]
prompt, completion = (
entry["conversations"][0]["value"],
entry["conversations"][1]["value"],
)
lora_request, tokenizer = self.get_random_lora_request(
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
@ -383,6 +406,7 @@ class ShareGPTDataset(BenchmarkDataset):
expected_output_len=new_output_len,
lora_request=lora_request,
))
self.maybe_oversample_requests(samples, num_requests)
return samples
@ -415,19 +439,20 @@ class SonnetDataset(BenchmarkDataset):
with open(self.dataset_path, encoding="utf-8") as f:
self.data = f.readlines()
def sample(self,
tokenizer,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
return_prompt_formatted: bool = False,
**kwargs) -> list:
def sample(
self,
tokenizer,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
return_prompt_formatted: bool = False,
**kwargs,
) -> list:
# Calculate average token length for a poem line.
tokenized_lines = [tokenizer(line).input_ids for line in self.data]
avg_len = sum(len(tokens)
for tokens in \
tokenized_lines) / len(tokenized_lines)
for tokens in tokenized_lines) / len(tokenized_lines)
# Build the base prompt.
base_prompt = "Pick as many lines as you can from these poem lines:\n"
@ -506,12 +531,14 @@ class BurstGPTDataset(BenchmarkDataset):
# Convert the dataframe to a list of lists.
return data.values.tolist()
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
**kwargs) -> list[SampleRequest]:
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
**kwargs,
) -> list[SampleRequest]:
samples = []
data = self._sample_loaded_data(num_requests=num_requests)
for i in range(num_requests):
@ -544,7 +571,6 @@ class HuggingFaceDataset(BenchmarkDataset):
Dataset class for processing a HuggingFace dataset with conversation data
and optional images.
"""
DEFAULT_NUM_REQUESTS = 1000
def __init__(
self,
@ -618,6 +644,7 @@ class HuggingFaceDataset(BenchmarkDataset):
expected_output_len=output_len,
multi_modal_data=mm_content,
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
@ -632,7 +659,6 @@ class VisionArenaDataset(HuggingFaceDataset):
"""
DEFAULT_OUTPUT_LEN = 128
DEFAULT_NUM_REQUESTS = 1000
VISION_ARENA_DATASET_PATH = "lmarena-ai/vision-arena-bench-v0.1"
def __init__(
@ -657,12 +683,14 @@ class VisionArenaDataset(HuggingFaceDataset):
)
self.data = dataset.shuffle(seed=self.random_seed)
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs) -> list:
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs,
) -> list:
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
sampled_requests = []
@ -685,4 +713,5 @@ class VisionArenaDataset(HuggingFaceDataset):
expected_output_len=output_len,
multi_modal_data=mm_content,
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests