[Benchmark] Add new H100 machine (#10547)

This commit is contained in:
Simon Mo 2024-11-21 18:27:20 -08:00 committed by GitHub
parent 9afa014552
commit aed074860a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 31 additions and 21 deletions

View File

@ -13,6 +13,7 @@ steps:
- wait
- label: "A100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: A100
plugins:
@ -45,6 +46,7 @@ steps:
medium: Memory
- label: "H200"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H200
plugins:
@ -63,21 +65,22 @@ steps:
- VLLM_USAGE_SOURCE
- HF_TOKEN
# - label: "H100"
# agents:
# queue: H100
# plugins:
# - docker#v5.11.0:
# image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
# command:
# - bash
# - .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
# mount-buildkite-agent: true
# propagate-environment: true
# ipc: host
# gpus: all
# environment:
# - VLLM_USAGE_SOURCE
# - HF_TOKEN
- label: "H100"
# skip: "use this flag to conditionally skip the benchmark step, useful for PR testing"
agents:
queue: H100
plugins:
- docker#v5.12.0:
image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash
- .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
mount-buildkite-agent: true
propagate-environment: true
ipc: host
gpus: all # see CUDA_VISIBLE_DEVICES for actual GPUs used
volumes:
- /data/benchmark-hf-cache:/root/.cache/huggingface
environment:
- VLLM_USAGE_SOURCE
- HF_TOKEN

View File

@ -157,11 +157,18 @@ if __name__ == "__main__":
throughput_results,
serving_results)
# Sort all dataframes by their respective "Test name" columns
for df in [latency_results, serving_results, throughput_results]:
if not df.empty:
if df.empty:
continue
# Sort all dataframes by their respective "Test name" columns
df.sort_values(by="Test name", inplace=True)
# The GPUs sometimes come in format of "GPUTYPE\nGPUTYPE\n...",
# we want to turn it into "8xGPUTYPE"
df["GPU"] = df["GPU"].apply(
lambda x: f"{len(x.split('\n'))}x{x.split('\n')[0]}")
# get markdown tables
latency_md_table = tabulate(latency_results,
headers='keys',