Adding cpu inference with VXE ISA for s390x architecture (#12613)

Signed-off-by: Dilip Gowda Bhagavan <dilip.bhagavan@ibm.com>
Signed-off-by: Rishika Kedia <rishika.kedia@in.ibm.com>
Co-authored-by: Rishika Kedia <rishika.kedia@in.ibm.com>
This commit is contained in:
Dilip Gowda Bhagavan 2025-03-06 22:10:53 +05:30 committed by GitHub
parent bf0560bda9
commit ada19210a3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 653 additions and 8 deletions

152
Dockerfile.s390x Normal file
View File

@ -0,0 +1,152 @@
# Base UBI image for s390x architecture
ARG BASE_UBI_IMAGE_TAG=9.5-1736404155
ARG PYTHON_VERSION=3.12
FROM registry.access.redhat.com/ubi9/ubi-minimal:${BASE_UBI_IMAGE_TAG} AS base
# Install basic dependencies
ARG PYTHON_VERSION
ENV PYTHON_VERSION=${PYTHON_VERSION}
WORKDIR /workspace
ENV LANG=C.UTF-8 \
LC_ALL=C.UTF-8
# Install development utilities
RUN microdnf install -y \
which procps findutils tar vim git gcc gcc-gfortran g++ make patch zlib-devel \
libjpeg-turbo-devel libtiff-devel libpng-devel libwebp-devel freetype-devel harfbuzz-devel \
openssl-devel openblas openblas-devel autoconf automake libtool cmake && \
microdnf clean all
# Python Installation
FROM base AS python-install
ARG PYTHON_VERSION
ENV VIRTUAL_ENV=/opt/vllm
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ENV PYTHON_VERSION=${PYTHON_VERSION}
RUN microdnf install -y \
python${PYTHON_VERSION}-devel python${PYTHON_VERSION}-pip python${PYTHON_VERSION}-wheel && \
python${PYTHON_VERSION} -m venv $VIRTUAL_ENV && pip install --no-cache -U pip wheel uv && microdnf clean all
FROM python-install AS pyarrow
# Build Apache Arrow
WORKDIR /tmp
RUN --mount=type=cache,target=/root/.cache/uv \
git clone https://github.com/apache/arrow.git && \
cd arrow/cpp && \
mkdir release && cd release && \
cmake -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=/usr/local \
-DARROW_PYTHON=ON \
-DARROW_PARQUET=ON \
-DARROW_ORC=ON \
-DARROW_FILESYSTEM=ON \
-DARROW_WITH_LZ4=ON \
-DARROW_WITH_ZSTD=ON \
-DARROW_WITH_SNAPPY=ON \
-DARROW_JSON=ON \
-DARROW_CSV=ON \
-DARROW_DATASET=ON \
-DPROTOBUF_PROTOC_EXECUTABLE=/usr/bin/protoc \
-DARROW_DEPENDENCY_SOURCE=BUNDLED \
.. && \
make -j$(nproc) && \
make install && \
cd ../../python && \
export PYARROW_PARALLEL=4 && \
export ARROW_BUILD_TYPE=release && \
uv pip install -r requirements-build.txt && \
python setup.py build_ext --build-type=$ARROW_BUILD_TYPE --bundle-arrow-cpp bdist_wheel
FROM python-install AS numa-build
# Install numactl (needed for numa.h dependency)
WORKDIR /tmp
RUN curl -LO https://github.com/numactl/numactl/archive/refs/tags/v2.0.16.tar.gz && \
tar -xvzf v2.0.16.tar.gz && \
cd numactl-2.0.16 && \
./autogen.sh && \
./configure && \
make
# Set include path
ENV C_INCLUDE_PATH="/usr/local/include:$C_INCLUDE_PATH"
FROM python-install AS rust
ENV CARGO_HOME=/root/.cargo
ENV RUSTUP_HOME=/root/.rustup
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
RUN curl https://sh.rustup.rs -sSf | sh -s -- -y && \
. "$CARGO_HOME/env" && \
rustup default stable && \
rustup show
FROM python-install AS torch-vision
# Install torchvision
ARG TORCH_VERSION=2.7.0.dev20250304
ARG TORCH_VISION_VERSION=v0.20.1
WORKDIR /tmp
RUN --mount=type=cache,target=/root/.cache/uv \
git clone https://github.com/pytorch/vision.git && \
cd vision && \
git checkout $TORCH_VISION_VERSION && \
uv pip install -v torch==${TORCH_VERSION} --extra-index-url https://download.pytorch.org/whl/nightly/cpu && \
python setup.py bdist_wheel
# Final build stage
FROM python-install AS vllm-cpu
ARG PYTHON_VERSION
# Set correct library path for torch and numactl
ENV LD_LIBRARY_PATH="/opt/vllm/lib64/python${PYTHON_VERSION}/site-packages/torch/lib:/usr/local/lib:$LD_LIBRARY_PATH"
ENV C_INCLUDE_PATH="/usr/local/include:$C_INCLUDE_PATH"
ENV UV_LINK_MODE=copy
ENV CARGO_HOME=/root/.cargo
ENV RUSTUP_HOME=/root/.rustup
ENV PATH="$CARGO_HOME/bin:$RUSTUP_HOME/bin:$PATH"
COPY . /workspace/vllm
WORKDIR /workspace/vllm
RUN --mount=type=bind,from=numa-build,src=/tmp/numactl-2.0.16,target=/numactl \
make -C /numactl install
# Install dependencies, including PyTorch and Apache Arrow
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,from=rust,source=/root/.cargo,target=/root/.cargo,rw \
--mount=type=bind,from=rust,source=/root/.rustup,target=/root/.rustup,rw \
--mount=type=bind,from=pyarrow,source=/tmp/arrow/python/dist,target=/tmp/arrow-wheels \
--mount=type=bind,from=torch-vision,source=/tmp/vision/dist,target=/tmp/vision-wheels/ \
sed -i '/^torch/d' requirements-build.txt && \
ARROW_WHL_FILE=$(ls /tmp/arrow-wheels/pyarrow-*.whl | head -n 1) && \
VISION_WHL_FILE=$(ls /tmp/vision-wheels/*.whl | head -n 1) && \
uv pip install -v \
$ARROW_WHL_FILE \
$VISION_WHL_FILE \
--extra-index-url https://download.pytorch.org/whl/nightly/cpu \
--index-strategy unsafe-best-match \
-r requirements-build.txt \
-r requirements-cpu.txt
# Build and install vllm
RUN --mount=type=cache,target=/root/.cache/uv \
VLLM_TARGET_DEVICE=cpu python setup.py bdist_wheel && \
uv pip install "$(echo dist/*.whl)[tensorizer]"
# setup non-root user for vllm
RUN umask 002 && \
useradd --uid 2000 --gid 0 vllm && \
mkdir -p /home/vllm && \
chmod g+rwx /home/vllm
COPY LICENSE /licenses/vllm.md
COPY examples/*.jinja /app/data/template/
USER 2000
WORKDIR /home/vllm
# Set the default entrypoint
ENTRYPOINT ["python", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -81,6 +81,7 @@ else()
find_isa(${CPUINFO} "POWER9" POWER9_FOUND)
find_isa(${CPUINFO} "asimd" ASIMD_FOUND) # Check for ARM NEON support
find_isa(${CPUINFO} "bf16" ARM_BF16_FOUND) # Check for ARM BF16 support
find_isa(${CPUINFO} "S390" S390_FOUND)
endif()
@ -129,8 +130,16 @@ elseif (ASIMD_FOUND)
elseif(APPLE_SILICON_FOUND)
message(STATUS "Apple Silicon Detected")
set(ENABLE_NUMA OFF)
elseif (S390_FOUND)
message(STATUS "S390 detected")
# Check for S390 VXE support
list(APPEND CXX_COMPILE_FLAGS
"-mvx"
"-mzvector"
"-march=native"
"-mtune=native")
else()
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA or ARMv8 support.")
message(FATAL_ERROR "vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA or ARMv8 support.")
endif()
#

View File

@ -24,8 +24,8 @@ struct KernelVecType<float> {
template <>
struct KernelVecType<c10::Half> {
#ifdef __powerpc64__
// Power architecture-specific vector types
#if defined(__powerpc64__) || defined(__s390x__)
// Power and s390x architecture-specific vector types
using q_load_vec_type = vec_op::FP32Vec8;
using k_load_vec_type = vec_op::FP32Vec16;
using v_load_vec_type = vec_op::FP32Vec16;

View File

@ -7,6 +7,9 @@
#elif defined(__POWER9_VECTOR__)
// ppc implementation
#include "cpu_types_vsx.hpp"
#elif defined(__s390x__)
// s390 implementation
#include "cpu_types_vxe.hpp"
#elif defined(__aarch64__)
// arm implementation
#include "cpu_types_arm.hpp"

480
csrc/cpu/cpu_types_vxe.hpp Normal file
View File

@ -0,0 +1,480 @@
#ifndef CPU_TYPES_VXE_HPP
#define CPU_TYPES_VXE_HPP
#include <vecintrin.h>
#include <cmath>
#include <torch/all.h>
namespace vec_op {
#define vec_neg(a) (-(a))
#define vec_add(a, b) ((a) + (b))
#define vec_sub(a, b) ((a) - (b))
#define vec_mul(a, b) ((a) * (b))
#define vec_div(a, b) ((a) / (b))
#define vec_sr(a, b) ((a) >> (b)) // Vector Shift Right Algebaic
#define vec_sl(a, b) ((a) << (b)) // Vector Shift Left
// FIXME: FP16 is not fully supported in Torch-CPU
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
#ifndef CPU_OP_GUARD
#define CPU_KERNEL_GUARD_IN(NAME)
#define CPU_KERNEL_GUARD_OUT(NAME)
#else
#define CPU_KERNEL_GUARD_IN(NAME) \
std::cout << #NAME << " invoked." << std::endl;
#define CPU_KERNEL_GUARD_OUT(NAME) \
std::cout << #NAME << " exit." << std::endl;
#endif
#define FORCE_INLINE __attribute__((always_inline)) inline
namespace {
template <typename T, T... indexes, typename F>
constexpr void unroll_loop_item(std::integer_sequence<T, indexes...>, F&& f) {
(f(std::integral_constant<T, indexes>{}), ...);
}
}; // namespace
template <typename T, T count, typename F,
typename = std::enable_if_t<std::is_invocable_v<F, T>>>
constexpr void unroll_loop(F&& f) {
unroll_loop_item(std::make_integer_sequence<T, count>{}, std::forward<F>(f));
}
template <typename T>
struct Vec {
constexpr static int get_elem_num() { return T::VEC_ELEM_NUM; }
};
typedef struct ss16x8x2_t {
__vector signed short val[2];
} ss16x8x2_t;
typedef struct ss16x8x4_t {
__vector signed short val[4];
} ss16x8x4_t;
typedef struct f32x4x2_t {
__vector float val[2];
} f32x4x2_t;
typedef struct f32x4x4_t {
__vector float val[4];
} f32x4x4_t;
struct FP32Vec8;
struct FP32Vec16;
struct BF16Vec8 : public Vec<BF16Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
__vector signed short reg;
explicit BF16Vec8(const void* ptr) : reg(*(__vector signed short*)ptr) {}
explicit BF16Vec8(const FP32Vec8&);
void save(void* ptr) const {
*reinterpret_cast<__vector signed short*>(ptr) = reg;
}
};
struct BF16Vec16 : public Vec<BF16Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
ss16x8x2_t reg;
explicit BF16Vec16(const void* ptr) {
// Load 256 bits in two parts
reg.val[0] = (__vector signed short)vec_xl(0, (signed short*)ptr);
reg.val[1] = (__vector signed short)vec_xl(16, (signed short*)ptr);
}
explicit BF16Vec16(const FP32Vec16&);
void save(void* ptr) const {
// Save 256 bits in two parts
vec_xst(reg.val[0], 0, (signed short*)ptr);
vec_xst(reg.val[1], 16, (signed short*)ptr);
}
};
const static __vector signed short zero = vec_splats((signed short)0);
struct BF16Vec32 : public Vec<BF16Vec32> {
constexpr static int VEC_ELEM_NUM = 32;
ss16x8x4_t reg;
explicit BF16Vec32(const void* ptr)
: reg(*reinterpret_cast<const ss16x8x4_t*>(ptr)) {}
explicit BF16Vec32(ss16x8x4_t data) : reg(data) {}
explicit BF16Vec32(const BF16Vec8& vec8_data)
: reg({vec8_data.reg, vec8_data.reg, vec8_data.reg, vec8_data.reg}) {}
void save(void* ptr) const { *reinterpret_cast<ss16x8x4_t*>(ptr) = reg; }
};
struct FP32Vec4 : public Vec<FP32Vec4> {
constexpr static int VEC_ELEM_NUM = 4;
union AliasReg {
__vector float reg;
float values[VEC_ELEM_NUM];
};
__vector float reg;
explicit FP32Vec4(float v) : reg(vec_splats(v)) {}
explicit FP32Vec4() : reg(vec_splats(0.0f)) {}
explicit FP32Vec4(const float* ptr) : reg(vec_xl(0, ptr)) {}
explicit FP32Vec4(__vector float data) : reg(data) {}
explicit FP32Vec4(const FP32Vec4& data) : reg(data.reg) {}
};
struct FP32Vec8 : public Vec<FP32Vec8> {
constexpr static int VEC_ELEM_NUM = 8;
union AliasReg {
f32x4x2_t reg;
float values[VEC_ELEM_NUM];
};
f32x4x2_t reg;
explicit FP32Vec8(float v) {
reg.val[0] = vec_splats(v);
reg.val[1] = vec_splats(v);
}
explicit FP32Vec8() {
reg.val[0] = vec_splats(0.0f);
reg.val[1] = vec_splats(0.0f);
}
explicit FP32Vec8(const float* ptr) {
reg.val[0] = vec_xl(0, ptr);
reg.val[1] = vec_xl(16, ptr);
}
explicit FP32Vec8(f32x4x2_t data) : reg(data) {}
explicit FP32Vec8(const FP32Vec8& data) {
reg.val[0] = data.reg.val[0];
reg.val[1] = data.reg.val[1];
}
explicit FP32Vec8(const BF16Vec8& v) {
reg.val[0] = (__vector float)vec_mergeh(zero, v.reg);
reg.val[1] = (__vector float)vec_mergel(zero, v.reg);
}
float reduce_sum() const {
AliasReg ar;
ar.reg = reg;
float result = 0;
unroll_loop<int, VEC_ELEM_NUM>(
[&result, &ar](int i) { result += ar.values[i]; });
return result;
}
FP32Vec8 exp() const {
// TODO: Vectorize this
AliasReg ar;
ar.reg = reg;
f32x4x4_t ret;
ret.val[0][0] = std::exp(ar.values[0]);
ret.val[0][1] = std::exp(ar.values[1]);
ret.val[0][2] = std::exp(ar.values[2]);
ret.val[0][3] = std::exp(ar.values[3]);
ret.val[1][0] = std::exp(ar.values[4]);
ret.val[1][1] = std::exp(ar.values[5]);
ret.val[1][2] = std::exp(ar.values[6]);
ret.val[1][3] = std::exp(ar.values[7]);
return FP32Vec8(f32x4x2_t({ret.val[0], ret.val[1]}));
}
FP32Vec8 tanh() const {
// TODO: Vectorize this
AliasReg ar;
ar.reg = reg;
f32x4x4_t ret;
ret.val[0][0] = std::tanh(ar.values[0]);
ret.val[0][1] = std::tanh(ar.values[1]);
ret.val[0][2] = std::tanh(ar.values[2]);
ret.val[0][3] = std::tanh(ar.values[3]);
ret.val[1][0] = std::tanh(ar.values[4]);
ret.val[1][1] = std::tanh(ar.values[5]);
ret.val[1][2] = std::tanh(ar.values[6]);
ret.val[1][3] = std::tanh(ar.values[7]);
return FP32Vec8(f32x4x2_t({ret.val[0], ret.val[1]}));
}
FP32Vec8 er() const {
// TODO: Vectorize this
AliasReg ar;
ar.reg = reg;
f32x4x4_t ret;
ret.val[0][0] = std::erf(ar.values[0]);
ret.val[0][1] = std::erf(ar.values[1]);
ret.val[0][2] = std::erf(ar.values[2]);
ret.val[0][3] = std::erf(ar.values[3]);
ret.val[1][0] = std::erf(ar.values[4]);
ret.val[1][1] = std::erf(ar.values[5]);
ret.val[1][2] = std::erf(ar.values[6]);
ret.val[1][3] = std::erf(ar.values[7]);
return FP32Vec8(f32x4x2_t({ret.val[0], ret.val[1]}));
}
FP32Vec8 operator*(const FP32Vec8& b) const {
return FP32Vec8(
{vec_mul(reg.val[0], b.reg.val[0]), vec_mul(reg.val[1], b.reg.val[1])});
}
FP32Vec8 operator+(const FP32Vec8& b) const {
return FP32Vec8(
{vec_add(reg.val[0], b.reg.val[0]), vec_add(reg.val[1], b.reg.val[1])});
}
FP32Vec8 operator-(const FP32Vec8& b) const {
return FP32Vec8(
{vec_sub(reg.val[0], b.reg.val[0]), vec_sub(reg.val[1], b.reg.val[1])});
}
FP32Vec8 operator/(const FP32Vec8& b) const {
return FP32Vec8(
{vec_div(reg.val[0], b.reg.val[0]), vec_div(reg.val[1], b.reg.val[1])});
}
void save(float* ptr) const {
vec_xst(reg.val[0], 0, ptr);
vec_xst(reg.val[1], 16, ptr);
}
};
struct FP32Vec16 : public Vec<FP32Vec16> {
constexpr static int VEC_ELEM_NUM = 16;
union AliasReg {
f32x4x4_t reg;
float values[VEC_ELEM_NUM];
};
f32x4x4_t reg;
explicit FP32Vec16(float v) {
reg.val[0] = vec_splats(v);
reg.val[1] = vec_splats(v);
reg.val[2] = vec_splats(v);
reg.val[3] = vec_splats(v);
}
explicit FP32Vec16() {
reg.val[0] = vec_splats(0.0f);
reg.val[1] = vec_splats(0.0f);
reg.val[2] = vec_splats(0.0f);
reg.val[3] = vec_splats(0.0f);
}
explicit FP32Vec16(const float* ptr) {
reg.val[0] = vec_xl(0, ptr);
reg.val[1] = vec_xl(16, ptr);
reg.val[2] = vec_xl(32, ptr);
reg.val[3] = vec_xl(48, ptr);
}
explicit FP32Vec16(f32x4x4_t data) : reg(data) {}
explicit FP32Vec16(const FP32Vec16& data) {
reg.val[0] = data.reg.val[0];
reg.val[1] = data.reg.val[1];
reg.val[2] = data.reg.val[2];
reg.val[3] = data.reg.val[3];
}
explicit FP32Vec16(const FP32Vec4& data) {
reg.val[0] = data.reg;
reg.val[1] = data.reg;
reg.val[2] = data.reg;
reg.val[3] = data.reg;
}
explicit FP32Vec16(const FP32Vec8& data) {
reg.val[0] = data.reg.val[0];
reg.val[1] = data.reg.val[1];
reg.val[2] = data.reg.val[0];
reg.val[3] = data.reg.val[1];
}
explicit FP32Vec16(const BF16Vec16& v) {
reg.val[0] = (__vector float)vec_mergeh(zero, v.reg.val[0]);
reg.val[1] = (__vector float)vec_mergel(zero, v.reg.val[0]);
reg.val[2] = (__vector float)vec_mergeh(zero, v.reg.val[1]);
reg.val[3] = (__vector float)vec_mergel(zero, v.reg.val[1]);
}
explicit FP32Vec16(const BF16Vec8& v) : FP32Vec16(FP32Vec8(v)) {}
FP32Vec16 operator*(const FP32Vec16& b) const {
return FP32Vec16(f32x4x4_t({vec_mul(reg.val[0], b.reg.val[0]),
vec_mul(reg.val[1], b.reg.val[1]),
vec_mul(reg.val[2], b.reg.val[2]),
vec_mul(reg.val[3], b.reg.val[3])}));
}
FP32Vec16 operator+(const FP32Vec16& b) const {
return FP32Vec16(f32x4x4_t({vec_add(reg.val[0], b.reg.val[0]),
vec_add(reg.val[1], b.reg.val[1]),
vec_add(reg.val[2], b.reg.val[2]),
vec_add(reg.val[3], b.reg.val[3])}));
}
FP32Vec16 operator-(const FP32Vec16& b) const {
return FP32Vec16(f32x4x4_t({vec_sub(reg.val[0], b.reg.val[0]),
vec_sub(reg.val[1], b.reg.val[1]),
vec_sub(reg.val[2], b.reg.val[2]),
vec_sub(reg.val[3], b.reg.val[3])}));
}
FP32Vec16 operator/(const FP32Vec16& b) const {
return FP32Vec16(f32x4x4_t({vec_div(reg.val[0], b.reg.val[0]),
vec_div(reg.val[1], b.reg.val[1]),
vec_div(reg.val[2], b.reg.val[2]),
vec_div(reg.val[3], b.reg.val[3])}));
}
float reduce_sum() const {
AliasReg ar;
ar.reg = reg;
float result = 0;
unroll_loop<int, VEC_ELEM_NUM>(
[&result, &ar](int i) { result += ar.values[i]; });
return result;
}
template <int group_size>
float reduce_sub_sum(int idx) {
static_assert(VEC_ELEM_NUM % group_size == 0);
AliasReg ar;
ar.reg = reg;
float result = 0;
const int start = idx * group_size;
unroll_loop<int, group_size>(
[&result, &start, ar](int i) { result += ar.values[start + i]; });
return result;
}
void save(float* ptr) const {
vec_xst(reg.val[0], 0, ptr);
vec_xst(reg.val[1], 16, ptr);
vec_xst(reg.val[2], 32, ptr);
vec_xst(reg.val[3], 48, ptr);
}
};
template <typename T>
struct VecType {
using vec_type = void;
};
template <typename T>
using vec_t = typename VecType<T>::vec_type;
template <>
struct VecType<float> {
using vec_type = FP32Vec8;
};
template <>
struct VecType<c10::BFloat16> {
using vec_type = BF16Vec8;
};
template <typename T>
void storeFP32(float v, T* ptr) {
*ptr = v;
}
inline void fma(FP32Vec16& acc, FP32Vec16& a, FP32Vec16& b) {
acc = acc + a * b;
}
namespace c10 {
struct BFloat16 {
uint16_t value; // Assume BFloat16 is defined as a struct containing a 16-bit
// value.
};
} // namespace c10
template <>
inline void storeFP32<c10::BFloat16>(float v, c10::BFloat16* ptr) {
c10::BFloat16 __attribute__((__may_alias__))* v_ptr =
reinterpret_cast<c10::BFloat16*>(&v);
*ptr = *(v_ptr + 1);
}
#ifndef __VEC_CLASS_FP_NAN
#define __VEC_CLASS_FP_NAN (1 << 6)
#endif
const static __vector unsigned char omask = {2, 3, 6, 7, 10, 11, 14, 15,
18, 19, 22, 23, 26, 27, 30, 31};
const static __vector unsigned int bias = {0x00007fff, 0x00007fff, 0x00007fff,
0x00007fff};
const static __vector unsigned int nan = {0x7fc00000, 0x7fc00000, 0x7fc00000,
0x7fc00000};
const static __vector unsigned int sh16 = {16, 16, 16, 16};
const static __vector unsigned int one = {1, 1, 1, 1};
inline BF16Vec8::BF16Vec8(const FP32Vec8& v) {
__vector unsigned int inp0 = (__vector unsigned int)(v.reg.val[0]);
__vector unsigned int inp1 = (__vector unsigned int)(v.reg.val[1]);
int cc;
__vector __bool int sel0 =
vec_fp_test_data_class(v.reg.val[0], __VEC_CLASS_FP_NAN, &cc);
__vector __bool int sel1 =
vec_fp_test_data_class(v.reg.val[1], __VEC_CLASS_FP_NAN, &cc);
inp0 = vec_sel(inp0, nan, sel0) >> sh16;
inp1 = vec_sel(inp1, nan, sel1) >> sh16;
reg = (__vector signed short)vec_perm(inp0, inp1, omask);
}
inline BF16Vec16::BF16Vec16(const FP32Vec16& v) {
__vector unsigned int inp0 = (__vector unsigned int)(v.reg.val[0]);
__vector unsigned int inp1 = (__vector unsigned int)(v.reg.val[1]);
__vector unsigned int inp2 = (__vector unsigned int)(v.reg.val[2]);
__vector unsigned int inp3 = (__vector unsigned int)(v.reg.val[3]);
int cc;
__vector __bool int sel0 =
vec_fp_test_data_class(v.reg.val[0], __VEC_CLASS_FP_NAN, &cc);
__vector __bool int sel1 =
vec_fp_test_data_class(v.reg.val[1], __VEC_CLASS_FP_NAN, &cc);
__vector __bool int sel2 =
vec_fp_test_data_class(v.reg.val[2], __VEC_CLASS_FP_NAN, &cc);
__vector __bool int sel3 =
vec_fp_test_data_class(v.reg.val[3], __VEC_CLASS_FP_NAN, &cc);
inp0 = vec_sel(inp0, nan, sel0) >> sh16;
inp1 = vec_sel(inp1, nan, sel1) >> sh16;
inp2 = vec_sel(inp2, nan, sel2) >> sh16;
inp3 = vec_sel(inp3, nan, sel3) >> sh16;
reg.val[0] = (__vector signed short)vec_perm(inp0, inp1, omask);
reg.val[1] = (__vector signed short)vec_perm(inp2, inp3, omask);
}
inline void prefetch(const void* addr) { void __dcbt(const void* addr); }
}; // namespace vec_op
#endif

View File

@ -25,7 +25,7 @@ struct KernelVecType<c10::BFloat16> {
template <>
struct KernelVecType<c10::Half> {
#ifdef __powerpc64__
#if defined(__powerpc64__) || defined(__s390x__)
// Power architecture-specific vector type
using load_vec_type = vec_op::FP32Vec16;
#else

View File

@ -2,14 +2,15 @@
-r requirements-common.txt
# Dependencies for CPUs
torch==2.5.1+cpu; platform_machine != "ppc64le" and platform_machine != "aarch64" and platform_system != "Darwin"
torch==2.5.1; platform_machine == "ppc64le" or platform_machine == "aarch64" or platform_system == "Darwin"
torch==2.5.1+cpu; platform_machine != "ppc64le" and platform_machine != "aarch64" and platform_system != "Darwin" and platform_machine != "s390x"
torch==2.5.1; platform_machine == "ppc64le" or platform_machine == "aarch64" or platform_system == "Darwin"
torch==2.7.0.dev20250304; platform_machine == "s390x"
# required for the image processor of minicpm-o-2_6, this must be updated alongside torch
torchaudio; platform_machine != "ppc64le"
torchaudio; platform_machine != "ppc64le" and platform_machine != "s390x"
torchaudio==2.5.1; platform_machine == "ppc64le"
# required for the image processor of phi3v, this must be updated alongside torch
torchvision; platform_machine != "ppc64le"
torchvision; platform_machine != "ppc64le" and platform_machine != "s390x"
torchvision==0.20.1; platform_machine == "ppc64le"
datasets # for benchmark scripts