[Bugfix][Model] Mixtral: use unused head_dim config argument (#14961)
Signed-off-by: Quentin Torroba <quentin.torroba@mistral.ai>
This commit is contained in:
parent
e1eb45d397
commit
aaaec52ad9
@ -111,6 +111,7 @@ class MixtralAttention(nn.Module):
|
|||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
|
config: MixtralConfig,
|
||||||
hidden_size: int,
|
hidden_size: int,
|
||||||
num_heads: int,
|
num_heads: int,
|
||||||
num_kv_heads: int,
|
num_kv_heads: int,
|
||||||
@ -136,7 +137,9 @@ class MixtralAttention(nn.Module):
|
|||||||
# the KV heads across multiple tensor parallel GPUs.
|
# the KV heads across multiple tensor parallel GPUs.
|
||||||
assert tp_size % self.total_num_kv_heads == 0
|
assert tp_size % self.total_num_kv_heads == 0
|
||||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||||
self.head_dim = hidden_size // self.total_num_heads
|
# MixtralConfig has an optional head_dim argument
|
||||||
|
self.head_dim = getattr(config, "head_dim",
|
||||||
|
self.hidden_size // self.total_num_heads)
|
||||||
self.q_size = self.num_heads * self.head_dim
|
self.q_size = self.num_heads * self.head_dim
|
||||||
self.kv_size = self.num_kv_heads * self.head_dim
|
self.kv_size = self.num_kv_heads * self.head_dim
|
||||||
self.scaling = self.head_dim**-0.5
|
self.scaling = self.head_dim**-0.5
|
||||||
@ -200,6 +203,7 @@ class MixtralDecoderLayer(nn.Module):
|
|||||||
# Requires transformers > 4.32.0
|
# Requires transformers > 4.32.0
|
||||||
rope_theta = getattr(config, "rope_theta", 10000)
|
rope_theta = getattr(config, "rope_theta", 10000)
|
||||||
self.self_attn = MixtralAttention(
|
self.self_attn = MixtralAttention(
|
||||||
|
config=config,
|
||||||
hidden_size=self.hidden_size,
|
hidden_size=self.hidden_size,
|
||||||
num_heads=config.num_attention_heads,
|
num_heads=config.num_attention_heads,
|
||||||
max_position=config.max_position_embeddings,
|
max_position=config.max_position_embeddings,
|
||||||
|
@ -165,6 +165,7 @@ class MixtralAttention(nn.Module):
|
|||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
|
config: MixtralConfig,
|
||||||
hidden_size: int,
|
hidden_size: int,
|
||||||
num_heads: int,
|
num_heads: int,
|
||||||
num_kv_heads: int,
|
num_kv_heads: int,
|
||||||
@ -190,7 +191,9 @@ class MixtralAttention(nn.Module):
|
|||||||
# the KV heads across multiple tensor parallel GPUs.
|
# the KV heads across multiple tensor parallel GPUs.
|
||||||
assert tp_size % self.total_num_kv_heads == 0
|
assert tp_size % self.total_num_kv_heads == 0
|
||||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||||
self.head_dim = hidden_size // self.total_num_heads
|
# MixtralConfig has an optional head_dim argument
|
||||||
|
self.head_dim = getattr(config, "head_dim",
|
||||||
|
self.hidden_size // self.total_num_heads)
|
||||||
self.q_size = self.num_heads * self.head_dim
|
self.q_size = self.num_heads * self.head_dim
|
||||||
self.kv_size = self.num_kv_heads * self.head_dim
|
self.kv_size = self.num_kv_heads * self.head_dim
|
||||||
self.scaling = self.head_dim**-0.5
|
self.scaling = self.head_dim**-0.5
|
||||||
@ -252,6 +255,7 @@ class MixtralDecoderLayer(nn.Module):
|
|||||||
# Requires transformers > 4.32.0
|
# Requires transformers > 4.32.0
|
||||||
rope_theta = getattr(config, "rope_theta", 10000)
|
rope_theta = getattr(config, "rope_theta", 10000)
|
||||||
self.self_attn = MixtralAttention(
|
self.self_attn = MixtralAttention(
|
||||||
|
config=config,
|
||||||
hidden_size=self.hidden_size,
|
hidden_size=self.hidden_size,
|
||||||
num_heads=config.num_attention_heads,
|
num_heads=config.num_attention_heads,
|
||||||
max_position=config.max_position_embeddings,
|
max_position=config.max_position_embeddings,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user