[Doc] Use intersphinx and update entrypoints docs (#5125)
This commit is contained in:
parent
d79d9eaaff
commit
a9bcc7afb2
@ -80,7 +80,7 @@ def setup(app):
|
||||
generate_examples()
|
||||
|
||||
|
||||
# Mock out external dependencies here.
|
||||
# Mock out external dependencies here, otherwise the autodoc pages may be blank.
|
||||
autodoc_mock_imports = [
|
||||
"cpuinfo",
|
||||
"torch",
|
||||
@ -115,4 +115,15 @@ class MockedClassDocumenter(autodoc.ClassDocumenter):
|
||||
|
||||
autodoc.ClassDocumenter = MockedClassDocumenter
|
||||
|
||||
intersphinx_mapping = {
|
||||
'python': ('https://docs.python.org/3', None),
|
||||
'typing_extensions':
|
||||
('https://typing-extensions.readthedocs.io/en/latest', None),
|
||||
'numpy': ('https://numpy.org/doc/stable', None),
|
||||
'torch': ('https://pytorch.org/docs/stable', None),
|
||||
'psutil': ('https://psutil.readthedocs.io/en/stable', None),
|
||||
}
|
||||
|
||||
autodoc_preserve_defaults = True
|
||||
|
||||
navigation_with_keys = False
|
||||
|
@ -307,8 +307,6 @@ class AsyncLLMEngine:
|
||||
generate method when there are requests in the waiting queue. The generate
|
||||
method yields the outputs from the :class:`LLMEngine` to the caller.
|
||||
|
||||
NOTE: For the comprehensive list of arguments, see :class:`LLMEngine`.
|
||||
|
||||
Args:
|
||||
worker_use_ray: Whether to use Ray for model workers. Required for
|
||||
distributed execution. Should be the same as
|
||||
|
@ -70,8 +70,8 @@ class LLMEngine:
|
||||
The :class:`~vllm.LLM` class wraps this class for offline batched inference
|
||||
and the :class:`AsyncLLMEngine` class wraps this class for online serving.
|
||||
|
||||
NOTE: The config arguments are derived from the :class:`~vllm.EngineArgs`
|
||||
class. For the comprehensive list of arguments, see :ref:`engine_args`.
|
||||
The config arguments are derived from :class:`~vllm.EngineArgs`. (See
|
||||
:ref:`engine_args`)
|
||||
|
||||
Args:
|
||||
model_config: The configuration related to the LLM model.
|
||||
|
@ -30,12 +30,6 @@ class LLM:
|
||||
this class generates texts from the model, using an intelligent batching
|
||||
mechanism and efficient memory management.
|
||||
|
||||
NOTE: This class is intended to be used for offline inference. For online
|
||||
serving, use the :class:`~vllm.AsyncLLMEngine` class instead.
|
||||
|
||||
NOTE: For the comprehensive list of arguments, see
|
||||
:class:`~vllm.EngineArgs`.
|
||||
|
||||
Args:
|
||||
model: The name or path of a HuggingFace Transformers model.
|
||||
tokenizer: The name or path of a HuggingFace Transformers tokenizer.
|
||||
@ -84,6 +78,12 @@ class LLM:
|
||||
When a sequence has context length larger than this, we fall back
|
||||
to eager mode.
|
||||
disable_custom_all_reduce: See ParallelConfig
|
||||
**kwargs: Arguments for :class:`~vllm.EngineArgs`. (See
|
||||
:ref:`engine_args`)
|
||||
|
||||
Note:
|
||||
This class is intended to be used for offline inference. For online
|
||||
serving, use the :class:`~vllm.AsyncLLMEngine` class instead.
|
||||
"""
|
||||
|
||||
DEPRECATE_LEGACY: ClassVar[bool] = False
|
||||
@ -253,7 +253,7 @@ class LLM:
|
||||
) -> List[RequestOutput]:
|
||||
"""Generates the completions for the input prompts.
|
||||
|
||||
NOTE: This class automatically batches the given prompts, considering
|
||||
This class automatically batches the given prompts, considering
|
||||
the memory constraint. For the best performance, put all of your prompts
|
||||
into a single list and pass it to this method.
|
||||
|
||||
@ -270,6 +270,11 @@ class LLM:
|
||||
Returns:
|
||||
A list of `RequestOutput` objects containing the
|
||||
generated completions in the same order as the input prompts.
|
||||
|
||||
Note:
|
||||
Using ``prompts`` and ``prompt_token_ids`` as keyword parameters is
|
||||
considered legacy and may be deprecated in the future. You should
|
||||
instead pass them via the ``inputs`` parameter.
|
||||
"""
|
||||
if prompt_token_ids is not None or multi_modal_data is not None:
|
||||
inputs = self._convert_v1_inputs(
|
||||
@ -393,7 +398,7 @@ class LLM:
|
||||
) -> List[EmbeddingRequestOutput]:
|
||||
"""Generates the completions for the input prompts.
|
||||
|
||||
NOTE: This class automatically batches the given prompts, considering
|
||||
This class automatically batches the given prompts, considering
|
||||
the memory constraint. For the best performance, put all of your prompts
|
||||
into a single list and pass it to this method.
|
||||
|
||||
@ -409,6 +414,11 @@ class LLM:
|
||||
Returns:
|
||||
A list of `EmbeddingRequestOutput` objects containing the
|
||||
generated embeddings in the same order as the input prompts.
|
||||
|
||||
Note:
|
||||
Using ``prompts`` and ``prompt_token_ids`` as keyword parameters is
|
||||
considered legacy and may be deprecated in the future. You should
|
||||
instead pass them via the ``inputs`` parameter.
|
||||
"""
|
||||
if prompt_token_ids is not None or multi_modal_data is not None:
|
||||
inputs = self._convert_v1_inputs(
|
||||
|
Loading…
x
Reference in New Issue
Block a user