[Misc] Replace os environ to monkeypatch in test suite (#14516)
Signed-off-by: sibi <85477603+t-sibiraj@users.noreply.github.com> Signed-off-by: Aaron Pham <contact@aarnphm.xyz> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com> Co-authored-by: Aaron Pham <contact@aarnphm.xyz>
This commit is contained in:
parent
1e799b7ec1
commit
a73e183e36
@ -522,7 +522,7 @@ steps:
|
||||
# TODO: investigate and fix
|
||||
# - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/disagg_test.py
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/test_disagg.py
|
||||
|
||||
- label: Plugin Tests (2 GPUs) # 40min
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
|
@ -47,6 +47,7 @@ def test_vllm_gc_ed():
|
||||
@pytest.mark.parametrize("max_tokens", [5])
|
||||
@pytest.mark.parametrize("enforce_eager", [False])
|
||||
def test_models(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
hf_runner,
|
||||
model: str,
|
||||
backend: str,
|
||||
@ -63,7 +64,8 @@ def test_models(
|
||||
pytest.skip(
|
||||
f"{backend} does not support gemma2 with full context length.")
|
||||
|
||||
os.environ["VLLM_ATTENTION_BACKEND"] = backend
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_ATTENTION_BACKEND", backend)
|
||||
|
||||
# 5042 tokens for gemma2
|
||||
# gemma2 has alternating sliding window size of 4096
|
||||
@ -80,7 +82,8 @@ def test_models(
|
||||
dtype=dtype,
|
||||
enforce_eager=enforce_eager,
|
||||
gpu_memory_utilization=0.7) as vllm_model:
|
||||
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
||||
vllm_outputs = vllm_model.generate_greedy(example_prompts,
|
||||
max_tokens)
|
||||
|
||||
check_outputs_equal(
|
||||
outputs_0_lst=hf_outputs,
|
||||
@ -104,6 +107,7 @@ def test_models(
|
||||
("meta-llama/Meta-Llama-3-8B", "ray", "FLASHINFER", "A100"),
|
||||
])
|
||||
def test_models_distributed(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
example_prompts,
|
||||
@ -116,13 +120,17 @@ def test_models_distributed(
|
||||
if test_suite != TARGET_TEST_SUITE:
|
||||
pytest.skip(f"Skip test for {test_suite}")
|
||||
|
||||
with monkeypatch.context() as monkeypatch_context:
|
||||
if model == "meta-llama/Llama-3.2-1B-Instruct" and distributed_executor_backend == "ray" and attention_backend == "" and test_suite == "L4": # noqa
|
||||
# test Ray Compiled Graph
|
||||
os.environ['VLLM_USE_RAY_SPMD_WORKER'] = "1"
|
||||
os.environ['VLLM_USE_RAY_COMPILED_DAG'] = "1"
|
||||
monkeypatch_context.setenv("VLLM_USE_RAY_SPMD_WORKER", "1")
|
||||
monkeypatch_context.setenv("VLLM_USE_RAY_COMPILED_DAG", "1")
|
||||
|
||||
if attention_backend:
|
||||
os.environ["VLLM_ATTENTION_BACKEND"] = attention_backend
|
||||
monkeypatch_context.setenv(
|
||||
"VLLM_ATTENTION_BACKEND",
|
||||
attention_backend,
|
||||
)
|
||||
|
||||
dtype = "half"
|
||||
max_tokens = 5
|
||||
@ -130,13 +138,16 @@ def test_models_distributed(
|
||||
# NOTE: take care of the order. run vLLM first, and then run HF.
|
||||
# vLLM needs a fresh new process without cuda initialization.
|
||||
# if we run HF first, the cuda initialization will be done and it
|
||||
# will hurt multiprocessing backend with fork method (the default method).
|
||||
with vllm_runner(model,
|
||||
# will hurt multiprocessing backend with fork method
|
||||
# (the default method).
|
||||
with vllm_runner(
|
||||
model,
|
||||
dtype=dtype,
|
||||
tensor_parallel_size=2,
|
||||
distributed_executor_backend=distributed_executor_backend
|
||||
distributed_executor_backend=distributed_executor_backend,
|
||||
) as vllm_model:
|
||||
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
||||
vllm_outputs = vllm_model.generate_greedy(example_prompts,
|
||||
max_tokens)
|
||||
|
||||
with hf_runner(model, dtype=dtype) as hf_model:
|
||||
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
|
||||
|
@ -7,16 +7,22 @@ prefill requests are chunked.
|
||||
|
||||
Run `pytest tests/models/test_chunked_prefill.py`.
|
||||
"""
|
||||
import os
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.kernels.utils import override_backend_env_variable
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import STR_BACKEND_ENV_VAR
|
||||
|
||||
from ..models.utils import check_logprobs_close, check_outputs_equal
|
||||
from ..utils import multi_gpu_test
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .conftest import HfRunner, VllmRunner
|
||||
|
||||
MODELS = [
|
||||
"facebook/opt-125m",
|
||||
"meta-llama/Llama-3.2-1B-Instruct",
|
||||
@ -24,12 +30,14 @@ MODELS = [
|
||||
|
||||
|
||||
@pytest.fixture(scope="function", autouse=True)
|
||||
def use_v0_only(monkeypatch):
|
||||
def use_v0_only(monkeypatch: pytest.MonkeyPatch):
|
||||
"""
|
||||
Since this module is V0 only, set VLLM_USE_V1=0 for
|
||||
all tests in the file.
|
||||
"""
|
||||
monkeypatch.setenv('VLLM_USE_V1', '0')
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv('VLLM_USE_V1', '0')
|
||||
yield
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model", MODELS)
|
||||
@ -42,8 +50,8 @@ def use_v0_only(monkeypatch):
|
||||
@pytest.mark.parametrize("tensor_parallel_size", [1])
|
||||
@pytest.mark.parametrize("attention_backend", ["FLASHINFER", "FLASH_ATTN"])
|
||||
def test_models(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
hf_runner: HfRunner,
|
||||
vllm_runner: VllmRunner,
|
||||
example_prompts,
|
||||
model: str,
|
||||
dtype: str,
|
||||
@ -52,13 +60,14 @@ def test_models(
|
||||
enforce_eager: bool,
|
||||
tensor_parallel_size: int,
|
||||
attention_backend: str,
|
||||
monkeypatch,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
) -> None:
|
||||
"""
|
||||
Checks exact match decode between huggingface model and vllm runner with
|
||||
chunked prefill.
|
||||
"""
|
||||
override_backend_env_variable(monkeypatch, attention_backend)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, attention_backend)
|
||||
|
||||
max_num_seqs = chunked_prefill_token_size
|
||||
max_num_batched_tokens = chunked_prefill_token_size
|
||||
@ -75,7 +84,8 @@ def test_models(
|
||||
enforce_eager=enforce_eager,
|
||||
max_num_seqs=max_num_seqs,
|
||||
) as vllm_model:
|
||||
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
||||
vllm_outputs = vllm_model.generate_greedy(example_prompts,
|
||||
max_tokens)
|
||||
|
||||
check_outputs_equal(
|
||||
outputs_0_lst=hf_outputs,
|
||||
@ -90,21 +100,21 @@ def test_models(
|
||||
@pytest.mark.parametrize("model", MODELS)
|
||||
@pytest.mark.parametrize("attention_backend", ["FLASHINFER", "FLASH_ATTN"])
|
||||
def test_models_distributed(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
hf_runner: HfRunner,
|
||||
vllm_runner: VllmRunner,
|
||||
example_prompts,
|
||||
model: str,
|
||||
distributed_executor_backend: str,
|
||||
attention_backend: str,
|
||||
monkeypatch,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
) -> None:
|
||||
override_backend_env_variable(monkeypatch, attention_backend)
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, attention_backend)
|
||||
if (model == "meta-llama/Llama-3.2-1B-Instruct"
|
||||
and distributed_executor_backend == "ray"):
|
||||
# test Ray Compiled Graph
|
||||
os.environ['VLLM_USE_RAY_SPMD_WORKER'] = "1"
|
||||
os.environ['VLLM_USE_RAY_COMPILED_DAG'] = "1"
|
||||
m.setenv("VLLM_USE_RAY_SPMD_WORKER", "1")
|
||||
m.setenv("VLLM_USE_RAY_COMPILED_DAG", "1")
|
||||
|
||||
dtype = "half"
|
||||
max_tokens = 5
|
||||
@ -119,7 +129,8 @@ def test_models_distributed(
|
||||
# NOTE: take care of the order. run vLLM first, and then run HF.
|
||||
# vLLM needs a fresh new process without cuda initialization.
|
||||
# if we run HF first, the cuda initialization will be done and it
|
||||
# will hurt multiprocessing backend with fork method (the default method).
|
||||
# will hurt multiprocessing backend with
|
||||
# fork method (the default method).
|
||||
|
||||
with vllm_runner(
|
||||
model,
|
||||
@ -130,7 +141,10 @@ def test_models_distributed(
|
||||
max_num_batched_tokens=max_num_batched_tokens,
|
||||
distributed_executor_backend=distributed_executor_backend,
|
||||
) as vllm_model:
|
||||
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
||||
vllm_outputs = vllm_model.generate_greedy(
|
||||
example_prompts,
|
||||
max_tokens,
|
||||
)
|
||||
|
||||
with hf_runner(model, dtype=dtype) as hf_model:
|
||||
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
|
||||
@ -158,7 +172,7 @@ def test_models_distributed(
|
||||
# the async postprocessor
|
||||
@pytest.mark.parametrize("disable_async_output_proc", [True])
|
||||
def test_models_with_fp8_kv_cache(
|
||||
vllm_runner,
|
||||
vllm_runner: VllmRunner,
|
||||
example_prompts,
|
||||
kv_cache_dtype: str,
|
||||
model: str,
|
||||
@ -218,7 +232,7 @@ def test_models_with_fp8_kv_cache(
|
||||
@pytest.mark.parametrize("tensor_parallel_size", [1])
|
||||
@pytest.mark.parametrize("dtype", ["half"])
|
||||
def test_with_prefix_caching(
|
||||
vllm_runner,
|
||||
vllm_runner: VllmRunner,
|
||||
max_tokens: int,
|
||||
enforce_eager: bool,
|
||||
chunk_size: int,
|
||||
@ -254,8 +268,10 @@ def test_with_prefix_caching(
|
||||
) as vllm_model:
|
||||
outputs[enable] = []
|
||||
for prompt in full_prompts:
|
||||
outputs[enable] += vllm_model.generate_greedy([prompt],
|
||||
max_tokens)
|
||||
outputs[enable] += vllm_model.generate_greedy(
|
||||
[prompt],
|
||||
max_tokens,
|
||||
)
|
||||
|
||||
check_outputs_equal(
|
||||
outputs_0_lst=outputs[False],
|
||||
@ -274,8 +290,8 @@ def test_with_prefix_caching(
|
||||
@pytest.mark.cpu_model
|
||||
@pytest.mark.skipif(not current_platform.is_cpu(), reason="CPU only")
|
||||
def test_models_cpu(
|
||||
hf_runner,
|
||||
vllm_runner,
|
||||
hf_runner: HfRunner,
|
||||
vllm_runner: VllmRunner,
|
||||
example_prompts,
|
||||
model: str,
|
||||
dtype: str,
|
||||
@ -283,7 +299,7 @@ def test_models_cpu(
|
||||
chunked_prefill_token_size: int,
|
||||
enforce_eager: bool,
|
||||
attention_backend: str,
|
||||
monkeypatch,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
) -> None:
|
||||
test_models(
|
||||
hf_runner,
|
||||
@ -307,7 +323,7 @@ def test_models_cpu(
|
||||
@pytest.mark.cpu_model
|
||||
@pytest.mark.skipif(not current_platform.is_cpu(), reason="CPU only")
|
||||
def test_with_prefix_caching_cpu(
|
||||
vllm_runner,
|
||||
vllm_runner: VllmRunner,
|
||||
max_tokens: int,
|
||||
enforce_eager: bool,
|
||||
chunk_size: int,
|
||||
|
@ -123,9 +123,9 @@ def test_cumem_with_cudagraph():
|
||||
# sleep mode with pytorch checkpoint
|
||||
("facebook/opt-125m", False),
|
||||
])
|
||||
def test_end_to_end(model: str, use_v1: bool):
|
||||
import os
|
||||
os.environ["VLLM_USE_V1"] = "1" if use_v1 else "0"
|
||||
def test_end_to_end(monkeypatch: pytest.MonkeyPatch, model: str, use_v1: bool):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1" if use_v1 else "0")
|
||||
free, total = torch.cuda.mem_get_info()
|
||||
used_bytes_baseline = total - free # in case other process is running
|
||||
llm = LLM(model, enable_sleep_mode=True)
|
||||
@ -158,5 +158,3 @@ def test_end_to_end(model: str, use_v1: bool):
|
||||
|
||||
# cmp output
|
||||
assert output[0].outputs[0].text == output2[0].outputs[0].text
|
||||
|
||||
del os.environ["VLLM_USE_V1"]
|
||||
|
@ -1,7 +1,7 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
from __future__ import annotations
|
||||
|
||||
import dataclasses
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
|
||||
@ -22,8 +22,11 @@ class TestSetting:
|
||||
fullgraph: bool
|
||||
|
||||
|
||||
# representative settings for testing
|
||||
test_settings = [
|
||||
# we cannot afford testing the full Catesian product
|
||||
# of all models and all levels
|
||||
@pytest.mark.parametrize(
|
||||
"test_setting",
|
||||
[
|
||||
# basic llama model
|
||||
TestSetting(
|
||||
model="meta-llama/Llama-3.2-1B-Instruct",
|
||||
@ -84,13 +87,11 @@ test_settings = [
|
||||
method="generate_with_image",
|
||||
fullgraph=False,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
# we cannot afford testing the full Catesian product
|
||||
# of all models and all levels
|
||||
@pytest.mark.parametrize("test_setting", test_settings)
|
||||
def test_compile_correctness(test_setting: TestSetting):
|
||||
])
|
||||
def test_compile_correctness(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
test_setting: TestSetting,
|
||||
):
|
||||
# this test is run under multiple suits, with different GPUs.
|
||||
# make sure we only run the test with correct CUDA devices.
|
||||
# don't use "<", as it will duplicate the tests.
|
||||
@ -103,13 +104,17 @@ def test_compile_correctness(test_setting: TestSetting):
|
||||
fullgraph = test_setting.fullgraph
|
||||
if cuda_device_count_stateless() != pp_size * tp_size:
|
||||
pytest.skip("Not correct CUDA devices for the test.")
|
||||
import os
|
||||
os.environ["VLLM_ATTENTION_BACKEND"] = attn_backend
|
||||
final_args = ["--enforce-eager"] + model_args + ["-pp", str(pp_size)] + \
|
||||
["-tp", str(tp_size)]
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_ATTENTION_BACKEND", attn_backend)
|
||||
final_args = [
|
||||
"--enforce-eager", *model_args, "-pp",
|
||||
str(pp_size), "-tp",
|
||||
str(tp_size)
|
||||
]
|
||||
|
||||
all_args: list[list[str]] = []
|
||||
all_envs: list[Optional[dict[str, str]]] = []
|
||||
all_envs: list[dict[str, str] | None] = []
|
||||
|
||||
for level in [
|
||||
CompilationLevel.NO_COMPILATION,
|
||||
|
@ -1,22 +1,115 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import pytest
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.quantization.utils import is_quant_method_supported
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.config import CompilationLevel
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from ..utils import fork_new_process_for_each_test
|
||||
from .utils import TEST_MODELS, check_full_graph_support
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_info", TEST_MODELS)
|
||||
@pytest.fixture(params=None, name="model_info")
|
||||
def models_list_fixture(request):
|
||||
TEST_MODELS: list[tuple[str, dict[str, Any]]] = [
|
||||
("facebook/opt-125m", {}),
|
||||
("nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change", {
|
||||
"dtype": torch.float16,
|
||||
"quantization": "compressed-tensors"
|
||||
}),
|
||||
("neuralmagic/Llama-3.2-1B-Instruct-FP8-dynamic", {
|
||||
"dtype": torch.float16,
|
||||
"quantization": "compressed-tensors"
|
||||
}),
|
||||
("neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8", {
|
||||
"quantization": "compressed-tensors"
|
||||
}),
|
||||
("meta-llama/Llama-3.2-1B-Instruct", {}),
|
||||
]
|
||||
|
||||
if is_quant_method_supported("aqlm"):
|
||||
TEST_MODELS.append(("ISTA-DASLab/Llama-2-7b-AQLM-2Bit-1x16-hf", {
|
||||
"quantization": "aqlm"
|
||||
}))
|
||||
|
||||
# TODO: figure out why this fails.
|
||||
if False and is_quant_method_supported("gguf"): # noqa: SIM223
|
||||
TEST_MODELS.append(("TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF", {
|
||||
"quantization": "gguf"
|
||||
}))
|
||||
|
||||
if is_quant_method_supported("gptq"):
|
||||
TEST_MODELS.append(("TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ", {
|
||||
"quantization": "gptq"
|
||||
}))
|
||||
|
||||
if is_quant_method_supported("gptq_marlin"):
|
||||
TEST_MODELS.append(("TheBloke/TinyLlama-1.1B-Chat-v1.0-GPTQ", {
|
||||
"quantization": "gptq_marlin"
|
||||
}))
|
||||
|
||||
if is_quant_method_supported("gptq_marlin_24"):
|
||||
TEST_MODELS.append(("alexm-nm/tinyllama-24-marlin24-4bit-g128", {
|
||||
"quantization": "gptq_marlin_24"
|
||||
}))
|
||||
|
||||
if is_quant_method_supported("marlin"):
|
||||
TEST_MODELS.append(
|
||||
("robertgshaw2/TinyLlama-1.1B-Chat-v1.0-g128-marlin", {
|
||||
"quantization": "marlin"
|
||||
}))
|
||||
|
||||
if not current_platform.is_rocm() and is_quant_method_supported("awq"):
|
||||
TEST_MODELS.append(("TheBloke/TinyLlama-1.1B-Chat-v0.3-AWQ", {
|
||||
"quantization": "AWQ"
|
||||
}))
|
||||
|
||||
return TEST_MODELS
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"optimization_level",
|
||||
[CompilationLevel.DYNAMO_ONCE, CompilationLevel.PIECEWISE])
|
||||
[CompilationLevel.DYNAMO_ONCE, CompilationLevel.PIECEWISE],
|
||||
)
|
||||
@pytest.mark.parametrize("model_info", "", indirect=True)
|
||||
@fork_new_process_for_each_test
|
||||
def test_full_graph(model_info, optimization_level):
|
||||
model = model_info[0]
|
||||
model_kwargs = model_info[1]
|
||||
check_full_graph_support(model,
|
||||
model_kwargs,
|
||||
optimization_level,
|
||||
tp_size=1)
|
||||
def test_full_graph(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
model_info: tuple[str, dict[str, Any]],
|
||||
optimization_level: int,
|
||||
):
|
||||
model, model_kwargs = model_info
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
# make sure these models can be captured in full graph mode
|
||||
m.setenv("VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE", "1")
|
||||
print(f"MODEL={model}")
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0)
|
||||
llm = LLM(
|
||||
model=model,
|
||||
enforce_eager=True,
|
||||
tensor_parallel_size=1,
|
||||
disable_custom_all_reduce=True,
|
||||
compilation_config=optimization_level,
|
||||
**model_kwargs,
|
||||
)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
# Print the outputs.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
@ -1,93 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
import torch
|
||||
|
||||
from tests.quantization.utils import is_quant_method_supported
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
TEST_MODELS = [
|
||||
("facebook/opt-125m", {}),
|
||||
("nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change", {
|
||||
"dtype": torch.float16,
|
||||
"quantization": "compressed-tensors"
|
||||
}),
|
||||
("neuralmagic/Llama-3.2-1B-Instruct-FP8-dynamic", {
|
||||
"dtype": torch.float16,
|
||||
"quantization": "compressed-tensors"
|
||||
}),
|
||||
("neuralmagic/Llama-3.2-1B-Instruct-quantized.w8a8", {
|
||||
"quantization": "compressed-tensors"
|
||||
}),
|
||||
("meta-llama/Llama-3.2-1B-Instruct", {}),
|
||||
]
|
||||
|
||||
if is_quant_method_supported("aqlm"):
|
||||
TEST_MODELS.append(("ISTA-DASLab/Llama-2-7b-AQLM-2Bit-1x16-hf", {
|
||||
"quantization": "aqlm"
|
||||
}))
|
||||
|
||||
# TODO: figure out why this fails.
|
||||
if False and is_quant_method_supported("gguf"): # noqa: SIM223
|
||||
TEST_MODELS.append(("TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF", {
|
||||
"quantization": "gguf"
|
||||
}))
|
||||
|
||||
if is_quant_method_supported("gptq"):
|
||||
TEST_MODELS.append(("TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ", {
|
||||
"quantization": "gptq"
|
||||
}))
|
||||
|
||||
if is_quant_method_supported("gptq_marlin"):
|
||||
TEST_MODELS.append(("TheBloke/TinyLlama-1.1B-Chat-v1.0-GPTQ", {
|
||||
"quantization": "gptq_marlin"
|
||||
}))
|
||||
|
||||
if is_quant_method_supported("gptq_marlin_24"):
|
||||
TEST_MODELS.append(("alexm-nm/tinyllama-24-marlin24-4bit-g128", {
|
||||
"quantization": "gptq_marlin_24"
|
||||
}))
|
||||
|
||||
if is_quant_method_supported("marlin"):
|
||||
TEST_MODELS.append(("robertgshaw2/TinyLlama-1.1B-Chat-v1.0-g128-marlin", {
|
||||
"quantization": "marlin"
|
||||
}))
|
||||
|
||||
if not current_platform.is_rocm() and is_quant_method_supported("awq"):
|
||||
TEST_MODELS.append(("TheBloke/TinyLlama-1.1B-Chat-v0.3-AWQ", {
|
||||
"quantization": "AWQ"
|
||||
}))
|
||||
|
||||
|
||||
def check_full_graph_support(model,
|
||||
model_kwargs,
|
||||
optimization_level,
|
||||
tp_size=1):
|
||||
# make sure these models can be captured in full graph mode
|
||||
os.environ["VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE"] = "1"
|
||||
|
||||
print(f"MODEL={model}")
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0)
|
||||
llm = LLM(model=model,
|
||||
enforce_eager=True,
|
||||
tensor_parallel_size=tp_size,
|
||||
disable_custom_all_reduce=True,
|
||||
compilation_config=optimization_level,
|
||||
**model_kwargs)
|
||||
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
# Print the outputs.
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
@ -3,7 +3,10 @@
|
||||
|
||||
Run `pytest tests/distributed/test_comm_ops.py`.
|
||||
"""
|
||||
import os
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Callable
|
||||
|
||||
import pytest
|
||||
import ray
|
||||
@ -17,12 +20,18 @@ from ..utils import init_test_distributed_environment, multi_process_parallel
|
||||
|
||||
|
||||
@ray.remote(num_gpus=1, max_calls=1)
|
||||
def all_reduce_test_worker(tp_size: int, pp_size: int, rank: int,
|
||||
distributed_init_port: str):
|
||||
def all_reduce_test_worker(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
tp_size: int,
|
||||
pp_size: int,
|
||||
rank: int,
|
||||
distributed_init_port: str,
|
||||
):
|
||||
# it is important to delete the CUDA_VISIBLE_DEVICES environment variable
|
||||
# so that each worker can see all the GPUs
|
||||
# they will be able to set the device to the correct GPU
|
||||
os.environ.pop("CUDA_VISIBLE_DEVICES", None)
|
||||
monkeypatch.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
||||
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
torch.cuda.set_device(device)
|
||||
init_test_distributed_environment(tp_size, pp_size, rank,
|
||||
@ -39,12 +48,17 @@ def all_reduce_test_worker(tp_size: int, pp_size: int, rank: int,
|
||||
|
||||
|
||||
@ray.remote(num_gpus=1, max_calls=1)
|
||||
def all_gather_test_worker(tp_size: int, pp_size: int, rank: int,
|
||||
distributed_init_port: str):
|
||||
def all_gather_test_worker(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
tp_size: int,
|
||||
pp_size: int,
|
||||
rank: int,
|
||||
distributed_init_port: str,
|
||||
):
|
||||
# it is important to delete the CUDA_VISIBLE_DEVICES environment variable
|
||||
# so that each worker can see all the GPUs
|
||||
# they will be able to set the device to the correct GPU
|
||||
os.environ.pop("CUDA_VISIBLE_DEVICES", None)
|
||||
monkeypatch.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
torch.cuda.set_device(device)
|
||||
init_test_distributed_environment(tp_size, pp_size, rank,
|
||||
@ -67,12 +81,17 @@ def all_gather_test_worker(tp_size: int, pp_size: int, rank: int,
|
||||
|
||||
|
||||
@ray.remote(num_gpus=1, max_calls=1)
|
||||
def broadcast_tensor_dict_test_worker(tp_size: int, pp_size: int, rank: int,
|
||||
distributed_init_port: str):
|
||||
def broadcast_tensor_dict_test_worker(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
tp_size: int,
|
||||
pp_size: int,
|
||||
rank: int,
|
||||
distributed_init_port: str,
|
||||
):
|
||||
# it is important to delete the CUDA_VISIBLE_DEVICES environment variable
|
||||
# so that each worker can see all the GPUs
|
||||
# they will be able to set the device to the correct GPU
|
||||
os.environ.pop("CUDA_VISIBLE_DEVICES", None)
|
||||
monkeypatch.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
torch.cuda.set_device(device)
|
||||
init_test_distributed_environment(tp_size, pp_size, rank,
|
||||
@ -106,9 +125,14 @@ def broadcast_tensor_dict_test_worker(tp_size: int, pp_size: int, rank: int,
|
||||
|
||||
|
||||
@ray.remote(num_gpus=1, max_calls=1)
|
||||
def send_recv_tensor_dict_test_worker(tp_size: int, pp_size: int, rank: int,
|
||||
distributed_init_port: str):
|
||||
os.environ.pop("CUDA_VISIBLE_DEVICES", None)
|
||||
def send_recv_tensor_dict_test_worker(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
tp_size: int,
|
||||
pp_size: int,
|
||||
rank: int,
|
||||
distributed_init_port: str,
|
||||
):
|
||||
monkeypatch.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
torch.cuda.set_device(device)
|
||||
init_test_distributed_environment(tp_size, pp_size, rank,
|
||||
@ -146,9 +170,14 @@ def send_recv_tensor_dict_test_worker(tp_size: int, pp_size: int, rank: int,
|
||||
|
||||
|
||||
@ray.remote(num_gpus=1, max_calls=1)
|
||||
def send_recv_test_worker(tp_size: int, pp_size: int, rank: int,
|
||||
distributed_init_port: str):
|
||||
os.environ.pop("CUDA_VISIBLE_DEVICES", None)
|
||||
def send_recv_test_worker(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
tp_size: int,
|
||||
pp_size: int,
|
||||
rank: int,
|
||||
distributed_init_port: str,
|
||||
):
|
||||
monkeypatch.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
torch.cuda.set_device(device)
|
||||
init_test_distributed_environment(tp_size, pp_size, rank,
|
||||
@ -174,8 +203,12 @@ def send_recv_test_worker(tp_size: int, pp_size: int, rank: int,
|
||||
all_reduce_test_worker, all_gather_test_worker,
|
||||
broadcast_tensor_dict_test_worker
|
||||
])
|
||||
def test_multi_process_tensor_parallel(tp_size, test_target):
|
||||
multi_process_parallel(tp_size, 1, test_target)
|
||||
def test_multi_process_tensor_parallel(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
tp_size: int,
|
||||
test_target: Callable[..., Any],
|
||||
):
|
||||
multi_process_parallel(monkeypatch, tp_size, 1, test_target)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 2,
|
||||
@ -183,8 +216,12 @@ def test_multi_process_tensor_parallel(tp_size, test_target):
|
||||
@pytest.mark.parametrize("pp_size", [2])
|
||||
@pytest.mark.parametrize(
|
||||
"test_target", [send_recv_test_worker, send_recv_tensor_dict_test_worker])
|
||||
def test_multi_process_pipeline_parallel(pp_size, test_target):
|
||||
multi_process_parallel(1, pp_size, test_target)
|
||||
def test_multi_process_pipeline_parallel(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
pp_size: int,
|
||||
test_target: Callable[..., Any],
|
||||
):
|
||||
multi_process_parallel(monkeypatch, 1, pp_size, test_target)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 4,
|
||||
@ -197,5 +234,9 @@ def test_multi_process_pipeline_parallel(pp_size, test_target):
|
||||
broadcast_tensor_dict_test_worker
|
||||
])
|
||||
def test_multi_process_tensor_parallel_pipeline_parallel(
|
||||
tp_size, pp_size, test_target):
|
||||
multi_process_parallel(tp_size, pp_size, test_target)
|
||||
tp_size: int,
|
||||
pp_size: int,
|
||||
test_target: Callable[..., Any],
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
):
|
||||
multi_process_parallel(monkeypatch, tp_size, pp_size, test_target)
|
||||
|
@ -1,6 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
import random
|
||||
|
||||
import pytest
|
||||
@ -23,8 +22,15 @@ for i, v in enumerate(test_sizes):
|
||||
|
||||
|
||||
@ray.remote(num_gpus=1, max_calls=1)
|
||||
def graph_allreduce(tp_size, pp_size, rank, distributed_init_port):
|
||||
os.environ.pop("CUDA_VISIBLE_DEVICES", None)
|
||||
def graph_allreduce(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
tp_size,
|
||||
pp_size,
|
||||
rank,
|
||||
distributed_init_port,
|
||||
):
|
||||
with monkeypatch.context() as m:
|
||||
m.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
torch.cuda.set_device(device)
|
||||
init_test_distributed_environment(tp_size, pp_size, rank,
|
||||
@ -79,8 +85,15 @@ def graph_allreduce(tp_size, pp_size, rank, distributed_init_port):
|
||||
|
||||
|
||||
@ray.remote(num_gpus=1, max_calls=1)
|
||||
def eager_allreduce(tp_size, pp_size, rank, distributed_init_port):
|
||||
os.environ.pop("CUDA_VISIBLE_DEVICES", None)
|
||||
def eager_allreduce(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
tp_size,
|
||||
pp_size,
|
||||
rank,
|
||||
distributed_init_port,
|
||||
):
|
||||
with monkeypatch.context() as m:
|
||||
m.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
torch.cuda.set_device(device)
|
||||
init_test_distributed_environment(tp_size, pp_size, rank,
|
||||
@ -110,8 +123,14 @@ def eager_allreduce(tp_size, pp_size, rank, distributed_init_port):
|
||||
@pytest.mark.parametrize("tp_size", [2])
|
||||
@pytest.mark.parametrize("pipeline_parallel_size", [1, 2])
|
||||
@pytest.mark.parametrize("test_target", [eager_allreduce, graph_allreduce])
|
||||
def test_custom_allreduce(tp_size, pipeline_parallel_size, test_target):
|
||||
def test_custom_allreduce(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
tp_size,
|
||||
pipeline_parallel_size,
|
||||
test_target,
|
||||
):
|
||||
world_size = tp_size * pipeline_parallel_size
|
||||
if world_size > torch.cuda.device_count():
|
||||
pytest.skip("Not enough GPUs to run the test.")
|
||||
multi_process_parallel(tp_size, pipeline_parallel_size, test_target)
|
||||
multi_process_parallel(monkeypatch, tp_size, pipeline_parallel_size,
|
||||
test_target)
|
||||
|
@ -7,15 +7,17 @@ import pytest
|
||||
from vllm.distributed.utils import get_pp_indices
|
||||
|
||||
|
||||
def test_custom_layer_partition():
|
||||
def test_custom_layer_partition(monkeypatch: pytest.MonkeyPatch):
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
|
||||
def _verify(partition_str, num_layers, pp_size, goldens):
|
||||
bak = os.environ.get("VLLM_PP_LAYER_PARTITION", None)
|
||||
os.environ["VLLM_PP_LAYER_PARTITION"] = partition_str
|
||||
m.setenv("VLLM_PP_LAYER_PARTITION", partition_str)
|
||||
for pp_rank, golden in enumerate(goldens):
|
||||
assert get_pp_indices(num_layers, pp_rank, pp_size) == golden
|
||||
if bak is not None:
|
||||
os.environ["VLLM_PP_LAYER_PARTITION"] = bak
|
||||
m.setenv("VLLM_PP_LAYER_PARTITION", bak)
|
||||
|
||||
# Even partition
|
||||
_verify("5,5,5,5", 20, 4, [(0, 5), (5, 10), (10, 15), (15, 20)])
|
||||
@ -55,6 +57,10 @@ def test_custom_layer_partition():
|
||||
(5, 3, 1, (2, 4)),
|
||||
(5, 3, 2, (4, 5)),
|
||||
])
|
||||
def test_uneven_auto_partition(num_hidden_layers: int, pp_size: int,
|
||||
pp_rank: int, indices: tuple[int, int]):
|
||||
def test_uneven_auto_partition(
|
||||
num_hidden_layers: int,
|
||||
pp_size: int,
|
||||
pp_rank: int,
|
||||
indices: tuple[int, int],
|
||||
):
|
||||
assert indices == get_pp_indices(num_hidden_layers, pp_rank, pp_size)
|
||||
|
@ -1,11 +1,15 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import pytest
|
||||
|
||||
from ..utils import compare_two_settings, fork_new_process_for_each_test
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from typing_extensions import LiteralString
|
||||
|
||||
|
||||
@pytest.mark.parametrize("PP_SIZE, MODEL_NAME", [
|
||||
(2, "JackFram/llama-160m"),
|
||||
@ -15,7 +19,13 @@ from ..utils import compare_two_settings, fork_new_process_for_each_test
|
||||
"FLASHINFER",
|
||||
])
|
||||
@fork_new_process_for_each_test
|
||||
def test_pp_cudagraph(PP_SIZE, MODEL_NAME, ATTN_BACKEND):
|
||||
def test_pp_cudagraph(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
PP_SIZE: int,
|
||||
MODEL_NAME: str,
|
||||
ATTN_BACKEND: LiteralString,
|
||||
):
|
||||
with monkeypatch.context() as m:
|
||||
cudagraph_args = [
|
||||
# use half precision for speed and memory savings in CI environment
|
||||
"--dtype",
|
||||
@ -25,7 +35,7 @@ def test_pp_cudagraph(PP_SIZE, MODEL_NAME, ATTN_BACKEND):
|
||||
"--distributed-executor-backend",
|
||||
"mp",
|
||||
]
|
||||
os.environ["VLLM_ATTENTION_BACKEND"] = ATTN_BACKEND
|
||||
m.setenv("VLLM_ATTENTION_BACKEND", ATTN_BACKEND)
|
||||
|
||||
eager_args = cudagraph_args + ["--enforce-eager"]
|
||||
|
||||
|
@ -49,7 +49,7 @@ TPU_TP_TEST_STR = "" #"tensor_parallel_size=4"
|
||||
@pytest.mark.skipif(not current_platform.is_cuda()
|
||||
and not current_platform.is_tpu(),
|
||||
reason="V1 is currently only supported on CUDA and TPU")
|
||||
def test_lm_eval_accuracy_v1_engine(monkeypatch):
|
||||
def test_lm_eval_accuracy_v1_engine(monkeypatch: pytest.MonkeyPatch):
|
||||
"""Run with the V1 Engine."""
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
@ -67,7 +67,7 @@ def test_lm_eval_accuracy_v1_engine(monkeypatch):
|
||||
run_test(more_args)
|
||||
|
||||
|
||||
def test_lm_eval_accuracy_v0_engine(monkeypatch):
|
||||
def test_lm_eval_accuracy_v0_engine(monkeypatch: pytest.MonkeyPatch):
|
||||
"""Run with the V0 Engine."""
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
|
@ -53,21 +53,29 @@ def cache_models():
|
||||
|
||||
@pytest.mark.skip_global_cleanup
|
||||
@pytest.mark.usefixtures("cache_models")
|
||||
def test_offline_mode(monkeypatch):
|
||||
def test_offline_mode(monkeypatch: pytest.MonkeyPatch):
|
||||
# Set HF to offline mode and ensure we can still construct an LLM
|
||||
with monkeypatch.context() as m:
|
||||
try:
|
||||
monkeypatch.setenv("HF_HUB_OFFLINE", "1")
|
||||
monkeypatch.setenv("VLLM_NO_USAGE_STATS", "1")
|
||||
m.setenv("HF_HUB_OFFLINE", "1")
|
||||
m.setenv("VLLM_NO_USAGE_STATS", "1")
|
||||
|
||||
def disable_connect(*args, **kwargs):
|
||||
raise RuntimeError("No http calls allowed")
|
||||
|
||||
monkeypatch.setattr(urllib3.connection.HTTPConnection, "connect",
|
||||
disable_connect)
|
||||
monkeypatch.setattr(urllib3.connection.HTTPSConnection, "connect",
|
||||
disable_connect)
|
||||
m.setattr(
|
||||
urllib3.connection.HTTPConnection,
|
||||
"connect",
|
||||
disable_connect,
|
||||
)
|
||||
m.setattr(
|
||||
urllib3.connection.HTTPSConnection,
|
||||
"connect",
|
||||
disable_connect,
|
||||
)
|
||||
|
||||
# Need to re-import huggingface_hub and friends to setup offline mode
|
||||
# Need to re-import huggingface_hub
|
||||
# and friends to setup offline mode
|
||||
_re_import_modules()
|
||||
# Cached model files should be used in offline mode
|
||||
for model_config in MODEL_CONFIGS:
|
||||
@ -75,10 +83,7 @@ def test_offline_mode(monkeypatch):
|
||||
finally:
|
||||
# Reset the environment after the test
|
||||
# NB: Assuming tests are run in online mode
|
||||
monkeypatch.delenv("HF_HUB_OFFLINE")
|
||||
monkeypatch.delenv("VLLM_NO_USAGE_STATS")
|
||||
_re_import_modules()
|
||||
pass
|
||||
|
||||
|
||||
def _re_import_modules():
|
||||
|
@ -70,7 +70,7 @@ def run_test(more_args):
|
||||
@pytest.mark.skipif(not current_platform.is_cuda()
|
||||
and not current_platform.is_tpu(),
|
||||
reason="V1 currently only supported on CUDA and TPU")
|
||||
def test_lm_eval_accuracy_v1_engine(monkeypatch):
|
||||
def test_lm_eval_accuracy_v1_engine(monkeypatch: pytest.MonkeyPatch):
|
||||
"""Run with the V1 Engine."""
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
@ -85,7 +85,8 @@ def test_lm_eval_accuracy_v1_engine(monkeypatch):
|
||||
|
||||
|
||||
@pytest.mark.parametrize("more_args", MORE_ARGS_LIST)
|
||||
def test_lm_eval_accuracy_v0_engine(monkeypatch, more_args):
|
||||
def test_lm_eval_accuracy_v0_engine(monkeypatch: pytest.MonkeyPatch,
|
||||
more_args):
|
||||
"""Run with the V0 Engine."""
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
|
@ -5,13 +5,12 @@ from unittest.mock import Mock, patch
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.utils import override_backend_env_variable
|
||||
from vllm.attention.selector import _cached_get_attn_backend, get_attn_backend
|
||||
from vllm.platforms.cpu import CpuPlatform
|
||||
from vllm.platforms.cuda import CudaPlatform
|
||||
from vllm.platforms.openvino import OpenVinoPlatform
|
||||
from vllm.platforms.rocm import RocmPlatform
|
||||
from vllm.utils import STR_FLASH_ATTN_VAL, STR_INVALID_VAL
|
||||
from vllm.utils import STR_BACKEND_ENV_VAR, STR_FLASH_ATTN_VAL, STR_INVALID_VAL
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
@ -25,54 +24,67 @@ def clear_cache():
|
||||
"name", ["TORCH_SDPA", "ROCM_FLASH", "XFORMERS", "FLASHINFER", "OPENVINO"])
|
||||
@pytest.mark.parametrize("use_v1", [True, False])
|
||||
@pytest.mark.parametrize("device", ["cpu", "openvino", "hip", "cuda"])
|
||||
def test_env(name: str, use_v1: bool, device: str, monkeypatch):
|
||||
def test_env(
|
||||
name: str,
|
||||
use_v1: bool,
|
||||
device: str,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
):
|
||||
"""Test that the attention selector can be set via environment variable.
|
||||
Note that we do not test FlashAttn because it is the default backend.
|
||||
"""
|
||||
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1" if use_v1 else "0")
|
||||
override_backend_env_variable(monkeypatch, name)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1" if use_v1 else "0")
|
||||
m.setenv(STR_BACKEND_ENV_VAR, name)
|
||||
|
||||
if device == "cpu":
|
||||
with patch("vllm.attention.selector.current_platform", CpuPlatform()):
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16, 16,
|
||||
False)
|
||||
with patch("vllm.attention.selector.current_platform",
|
||||
CpuPlatform()):
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16,
|
||||
16, False)
|
||||
assert backend.get_name() == "TORCH_SDPA"
|
||||
elif device == "hip":
|
||||
with patch("vllm.attention.selector.current_platform", RocmPlatform()):
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16, 16,
|
||||
False)
|
||||
with patch("vllm.attention.selector.current_platform",
|
||||
RocmPlatform()):
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16,
|
||||
16, False)
|
||||
EXPECTED = "ROCM_ATTN_VLLM_V1" if use_v1 else "ROCM_FLASH"
|
||||
assert backend.get_name() == EXPECTED
|
||||
elif device == "openvino":
|
||||
with patch("vllm.attention.selector.current_platform",
|
||||
OpenVinoPlatform()), patch.dict('sys.modules',
|
||||
{'openvino': Mock()}):
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16, 16,
|
||||
False)
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16,
|
||||
16, False)
|
||||
assert backend.get_name() == "OPENVINO"
|
||||
else:
|
||||
if name in ["XFORMERS", "FLASHINFER"]:
|
||||
with patch("vllm.attention.selector.current_platform",
|
||||
CudaPlatform()):
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16,
|
||||
16, False)
|
||||
backend = get_attn_backend(16, torch.float16,
|
||||
torch.float16, 16, False)
|
||||
EXPECTED = "FLASH_ATTN_VLLM_V1" if use_v1 else name
|
||||
assert backend.get_name() == EXPECTED
|
||||
|
||||
|
||||
def test_flash_attn(monkeypatch):
|
||||
def test_flash_attn(monkeypatch: pytest.MonkeyPatch):
|
||||
"""Test FlashAttn validation."""
|
||||
# TODO: When testing for v1, pipe in `use_v1` as an argument to
|
||||
# get_attn_backend
|
||||
|
||||
override_backend_env_variable(monkeypatch, STR_FLASH_ATTN_VAL)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, STR_FLASH_ATTN_VAL)
|
||||
|
||||
# Unsupported CUDA arch
|
||||
with patch("torch.cuda.get_device_capability", return_value=(7, 5)):
|
||||
monkeypatch.setattr(torch.cuda, "get_device_capability", lambda:
|
||||
(7, 5))
|
||||
backend = get_attn_backend(16, torch.float16, None, 16, False)
|
||||
assert backend.get_name() != STR_FLASH_ATTN_VAL
|
||||
|
||||
# Reset the monkeypatch for subsequent tests
|
||||
monkeypatch.undo()
|
||||
|
||||
# Unsupported data type
|
||||
backend = get_attn_backend(16, torch.float8_e4m3fn, None, 16, False)
|
||||
assert backend.get_name() != STR_FLASH_ATTN_VAL
|
||||
@ -86,10 +98,19 @@ def test_flash_attn(monkeypatch):
|
||||
assert backend.get_name() != STR_FLASH_ATTN_VAL
|
||||
|
||||
# flash-attn is not installed
|
||||
with patch.dict('sys.modules', {'vllm_flash_attn': None}):
|
||||
import sys
|
||||
original_module = sys.modules.get('vllm_flash_attn')
|
||||
monkeypatch.setitem(sys.modules, 'vllm_flash_attn', None)
|
||||
backend = get_attn_backend(16, torch.float16, None, 16, False)
|
||||
assert backend.get_name() != STR_FLASH_ATTN_VAL
|
||||
|
||||
# Restore the original module if it existed
|
||||
if original_module is not None:
|
||||
monkeypatch.setitem(sys.modules, 'vllm_flash_attn',
|
||||
original_module)
|
||||
else:
|
||||
monkeypatch.delitem(sys.modules, 'vllm_flash_attn', raising=False)
|
||||
|
||||
# Unsupported head size
|
||||
backend = get_attn_backend(17, torch.float16, None, 16, False)
|
||||
assert backend.get_name() != STR_FLASH_ATTN_VAL
|
||||
@ -100,12 +121,14 @@ def test_flash_attn(monkeypatch):
|
||||
|
||||
|
||||
@pytest.mark.parametrize("use_v1", [True, False])
|
||||
def test_invalid_env(use_v1: bool, monkeypatch):
|
||||
"""Ignore the invalid env variable if it is set."""
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1" if use_v1 else "0")
|
||||
override_backend_env_variable(monkeypatch, STR_INVALID_VAL)
|
||||
def test_invalid_env(use_v1: bool, monkeypatch: pytest.MonkeyPatch):
|
||||
|
||||
with patch("vllm.attention.selector.current_platform", CudaPlatform()):
|
||||
with monkeypatch.context() as m, patch(
|
||||
"vllm.attention.selector.current_platform", CudaPlatform()):
|
||||
m.setenv("VLLM_USE_V1", "1" if use_v1 else "0")
|
||||
m.setenv(STR_BACKEND_ENV_VAR, STR_INVALID_VAL)
|
||||
|
||||
# Test with head size 32
|
||||
backend = get_attn_backend(32, torch.float16, None, 16, False)
|
||||
EXPECTED = "FLASH_ATTN_VLLM_V1" if use_v1 else "FLASH_ATTN"
|
||||
assert backend.get_name() == EXPECTED
|
||||
|
@ -1,7 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
@ -11,8 +9,9 @@ from vllm import _custom_ops as ops # noqa: F401
|
||||
|
||||
@pytest.mark.skipif(not hasattr(torch.ops._C, "awq_dequantize"),
|
||||
reason="AWQ is not supported on this GPU type.")
|
||||
def test_awq_dequantize_opcheck():
|
||||
os.environ["VLLM_USE_TRITON_AWQ"] = "0"
|
||||
def test_awq_dequantize_opcheck(monkeypatch: pytest.MonkeyPatch):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_TRITON_AWQ", "0")
|
||||
qweight = torch.randint(-2000000000,
|
||||
2000000000, (8192, 256),
|
||||
device='cuda',
|
||||
@ -29,8 +28,9 @@ def test_awq_dequantize_opcheck():
|
||||
@pytest.mark.skip(reason="Not working; needs investigation.")
|
||||
@pytest.mark.skipif(not hasattr(torch.ops._C, "awq_gemm"),
|
||||
reason="AWQ is not supported on this GPU type.")
|
||||
def test_awq_gemm_opcheck():
|
||||
os.environ["VLLM_USE_TRITON_AWQ"] = "0"
|
||||
def test_awq_gemm_opcheck(monkeypatch: pytest.MonkeyPatch):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_TRITON_AWQ", "0")
|
||||
input = torch.rand((2, 8192), device='cuda', dtype=torch.float16)
|
||||
qweight = torch.randint(-2000000000,
|
||||
2000000000, (8192, 256),
|
||||
|
@ -1,13 +1,11 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.utils import override_backend_env_variable
|
||||
from vllm.attention.selector import _cached_get_attn_backend, get_attn_backend
|
||||
from vllm.platforms.rocm import RocmPlatform
|
||||
from vllm.utils import STR_BACKEND_ENV_VAR
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
@ -17,15 +15,19 @@ def clear_cache():
|
||||
_cached_get_attn_backend.cache_clear()
|
||||
|
||||
|
||||
def test_selector(monkeypatch):
|
||||
"""Test that the attention selector for ROCm.
|
||||
"""
|
||||
override_backend_env_variable(monkeypatch, "ROCM_FLASH")
|
||||
def test_selector(monkeypatch: pytest.MonkeyPatch):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, "ROCM_FLASH")
|
||||
|
||||
with patch("vllm.attention.selector.current_platform", RocmPlatform()):
|
||||
# Set the current platform to ROCm using monkeypatch
|
||||
monkeypatch.setattr("vllm.attention.selector.current_platform",
|
||||
RocmPlatform())
|
||||
|
||||
# Test standard ROCm attention
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16, 16, False)
|
||||
assert (backend.get_name() == "ROCM_FLASH"
|
||||
or backend.get_name() == "ROCM_ATTN_VLLM_V1")
|
||||
|
||||
# mla test for deepseek related
|
||||
backend = get_attn_backend(576, torch.bfloat16, "auto", 16, False,
|
||||
False, True)
|
||||
|
@ -12,11 +12,10 @@ import pytest
|
||||
from tests.kernels.utils import override_backend_env_variable
|
||||
from tests.quantization.utils import is_quant_method_supported
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import STR_BACKEND_ENV_VAR
|
||||
|
||||
from ...utils import check_logprobs_close
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
||||
|
||||
|
||||
@pytest.mark.quant_model
|
||||
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
|
||||
@ -55,13 +54,15 @@ def test_models(
|
||||
backend: str,
|
||||
tensor_parallel_size: int,
|
||||
disable_async_output_proc: bool,
|
||||
monkeypatch,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
) -> None:
|
||||
"""
|
||||
Only checks log probs match to cover the discrepancy in
|
||||
numerical sensitive kernels.
|
||||
"""
|
||||
override_backend_env_variable(monkeypatch, backend)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("TOKENIZERS_PARALLELISM", 'true')
|
||||
m.setenv(STR_BACKEND_ENV_VAR, backend)
|
||||
|
||||
MAX_MODEL_LEN = 1024
|
||||
NUM_LOG_PROBS = 8
|
||||
@ -119,11 +120,14 @@ def test_cpu_models(
|
||||
test_model: str,
|
||||
max_tokens: int,
|
||||
disable_async_output_proc: bool,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
) -> None:
|
||||
"""
|
||||
Only checks log probs match to cover the discrepancy in
|
||||
numerical sensitive kernels.
|
||||
"""
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("TOKENIZERS_PARALLELISM", 'true')
|
||||
|
||||
MAX_MODEL_LEN = 1024
|
||||
NUM_LOG_PROBS = 8
|
||||
|
@ -1,4 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
from __future__ import annotations
|
||||
|
||||
import importlib.util
|
||||
import math
|
||||
@ -11,6 +12,7 @@ from scipy.spatial.distance import cosine
|
||||
|
||||
import vllm
|
||||
import vllm.config
|
||||
from vllm.utils import STR_BACKEND_ENV_VAR
|
||||
|
||||
from ....utils import RemoteOpenAIServer
|
||||
|
||||
@ -29,9 +31,10 @@ def _arr(arr):
|
||||
return array("i", arr)
|
||||
|
||||
|
||||
def test_find_array(monkeypatch):
|
||||
def test_find_array(monkeypatch: pytest.MonkeyPatch):
|
||||
# GritLM embedding implementation is only supported by XFormers backend.
|
||||
monkeypatch.setenv("VLLM_ATTENTION_BACKEND", "XFORMERS")
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, "XFORMERS")
|
||||
|
||||
from vllm.model_executor.models.gritlm import GritLMPooler
|
||||
|
||||
@ -53,9 +56,6 @@ def test_find_array(monkeypatch):
|
||||
@pytest.fixture(scope="module")
|
||||
def server_embedding():
|
||||
# GritLM embedding implementation is only supported by XFormers backend.
|
||||
with pytest.MonkeyPatch.context() as mp:
|
||||
mp.setenv("VLLM_ATTENTION_BACKEND", "XFORMERS")
|
||||
|
||||
args = ["--task", "embed", "--max_model_len", str(MAX_MODEL_LEN)]
|
||||
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
|
||||
yield remote_server
|
||||
@ -69,7 +69,10 @@ def server_generate():
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def client_embedding(server_embedding: RemoteOpenAIServer):
|
||||
async def client_embedding(monkeypatch: pytest.MonkeyPatch,
|
||||
server_embedding: RemoteOpenAIServer):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_ATTENTION_BACKEND", "XFORMERS")
|
||||
async with server_embedding.get_async_client() as async_client:
|
||||
yield async_client
|
||||
|
||||
@ -80,14 +83,20 @@ async def client_generate(server_generate: RemoteOpenAIServer):
|
||||
yield async_client
|
||||
|
||||
|
||||
def run_llm_encode(llm: vllm.LLM, queries: list[str],
|
||||
instruction: str) -> list[float]:
|
||||
def run_llm_encode(
|
||||
llm: vllm.LLM,
|
||||
queries: list[str],
|
||||
instruction: str,
|
||||
) -> list[float]:
|
||||
outputs = llm.encode([instruction + q for q in queries], )
|
||||
return [output.outputs.embedding for output in outputs]
|
||||
|
||||
|
||||
async def run_client_embeddings(client: vllm.LLM, queries: list[str],
|
||||
instruction: str) -> list[float]:
|
||||
async def run_client_embeddings(
|
||||
client: vllm.LLM,
|
||||
queries: list[str],
|
||||
instruction: str,
|
||||
) -> list[float]:
|
||||
outputs = await client.embeddings.create(
|
||||
model=MODEL_NAME,
|
||||
input=[instruction + q for q in queries],
|
||||
@ -106,7 +115,7 @@ def get_test_data():
|
||||
README.md in https://github.com/ContextualAI/gritlm
|
||||
"""
|
||||
q_instruction = gritlm_instruction(
|
||||
"Given a scientific paper title, retrieve the paper's abstract")
|
||||
"Given a scientific paper title, retrieve the paper's abstract", )
|
||||
queries = [
|
||||
"Bitcoin: A Peer-to-Peer Electronic Cash System",
|
||||
"Generative Representational Instruction Tuning",
|
||||
@ -136,9 +145,10 @@ def validate_embed_output(q_rep: list[float], d_rep: list[float]):
|
||||
assert math.isclose(cosine_sim_q1_d1, 0.532, abs_tol=0.001)
|
||||
|
||||
|
||||
def test_gritlm_offline_embedding(monkeypatch):
|
||||
def test_gritlm_offline_embedding(monkeypatch: pytest.MonkeyPatch):
|
||||
# GritLM embedding implementation is only supported by XFormers backend.
|
||||
monkeypatch.setenv("VLLM_ATTENTION_BACKEND", "XFORMERS")
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, "XFORMERS")
|
||||
|
||||
queries, q_instruction, documents, d_instruction = get_test_data()
|
||||
|
||||
@ -160,7 +170,7 @@ def test_gritlm_offline_embedding(monkeypatch):
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_gritlm_api_server_embedding(
|
||||
client_embedding: openai.AsyncOpenAI):
|
||||
client_embedding: openai.AsyncOpenAI, ):
|
||||
queries, q_instruction, documents, d_instruction = get_test_data()
|
||||
|
||||
d_rep = await run_client_embeddings(
|
||||
|
@ -1,7 +1,5 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
@ -11,20 +9,28 @@ from ..utils import fork_new_process_for_each_test
|
||||
|
||||
|
||||
@fork_new_process_for_each_test
|
||||
def test_plugin(dummy_opt_path, monkeypatch):
|
||||
def test_plugin(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
dummy_opt_path: str,
|
||||
):
|
||||
# V1 shuts down rather than raising an error here.
|
||||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||||
os.environ["VLLM_PLUGINS"] = ""
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "0")
|
||||
m.setenv("VLLM_PLUGINS", "")
|
||||
|
||||
with pytest.raises(Exception) as excinfo:
|
||||
LLM(model=dummy_opt_path, load_format="dummy")
|
||||
error_msg = "has no vLLM implementation and " \
|
||||
"the Transformers implementation is not compatible with vLLM"
|
||||
error_msg = "has no vLLM implementation and the Transformers implementation is not compatible with vLLM" # noqa: E501
|
||||
assert (error_msg in str(excinfo.value))
|
||||
|
||||
|
||||
@fork_new_process_for_each_test
|
||||
def test_oot_registration_text_generation(dummy_opt_path):
|
||||
os.environ["VLLM_PLUGINS"] = "register_dummy_model"
|
||||
def test_oot_registration_text_generation(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
dummy_opt_path: str,
|
||||
):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_PLUGINS", "register_dummy_model")
|
||||
prompts = ["Hello, my name is", "The text does not matter"]
|
||||
sampling_params = SamplingParams(temperature=0)
|
||||
llm = LLM(model=dummy_opt_path, load_format="dummy")
|
||||
@ -39,8 +45,12 @@ def test_oot_registration_text_generation(dummy_opt_path):
|
||||
|
||||
|
||||
@fork_new_process_for_each_test
|
||||
def test_oot_registration_embedding(dummy_gemma2_embedding_path):
|
||||
os.environ["VLLM_PLUGINS"] = "register_dummy_model"
|
||||
def test_oot_registration_embedding(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
dummy_gemma2_embedding_path: str,
|
||||
):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_PLUGINS", "register_dummy_model")
|
||||
prompts = ["Hello, my name is", "The text does not matter"]
|
||||
llm = LLM(model=dummy_gemma2_embedding_path, load_format="dummy")
|
||||
outputs = llm.embed(prompts)
|
||||
@ -53,8 +63,12 @@ image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
|
||||
|
||||
|
||||
@fork_new_process_for_each_test
|
||||
def test_oot_registration_multimodal(dummy_llava_path, monkeypatch):
|
||||
os.environ["VLLM_PLUGINS"] = "register_dummy_model"
|
||||
def test_oot_registration_multimodal(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
dummy_llava_path: str,
|
||||
):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_PLUGINS", "register_dummy_model")
|
||||
prompts = [{
|
||||
"prompt": "What's in the image?<image>",
|
||||
"multi_modal_data": {
|
||||
|
@ -235,9 +235,11 @@ async def test_bad_request(tmp_socket):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_mp_crash_detection(monkeypatch):
|
||||
async def test_mp_crash_detection(monkeypatch: pytest.MonkeyPatch):
|
||||
with monkeypatch.context() as m:
|
||||
|
||||
parser = FlexibleArgumentParser(description="vLLM's remote OpenAI server.")
|
||||
parser = FlexibleArgumentParser(
|
||||
description="vLLM's remote OpenAI server.")
|
||||
parser = make_arg_parser(parser)
|
||||
args = parser.parse_args([])
|
||||
|
||||
@ -245,14 +247,15 @@ async def test_mp_crash_detection(monkeypatch):
|
||||
def mock_init():
|
||||
raise ValueError
|
||||
|
||||
monkeypatch.setattr(LLMEngine, "__init__", mock_init)
|
||||
m.setattr(LLMEngine, "__init__", mock_init)
|
||||
|
||||
start = time.perf_counter()
|
||||
async with build_async_engine_client(args):
|
||||
pass
|
||||
end = time.perf_counter()
|
||||
|
||||
assert end - start < 60, ("Expected vLLM to gracefully shutdown in <60s "
|
||||
assert end - start < 60, (
|
||||
"Expected vLLM to gracefully shutdown in <60s "
|
||||
"if there is an error in the startup.")
|
||||
|
||||
|
||||
|
@ -5,7 +5,7 @@ from typing import Optional
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.kernels.utils import override_backend_env_variable
|
||||
from vllm.utils import STR_BACKEND_ENV_VAR
|
||||
|
||||
from ..models.utils import check_logprobs_close
|
||||
from ..utils import (completions_with_server_args, get_client_text_generations,
|
||||
@ -52,7 +52,7 @@ async def test_multi_step(
|
||||
num_logprobs: Optional[int],
|
||||
attention_backend: str,
|
||||
enable_chunked_prefill: bool,
|
||||
monkeypatch,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
) -> None:
|
||||
"""Test vLLM engine with multi-step scheduling in an OpenAI-protocol
|
||||
client/server environment.
|
||||
@ -82,7 +82,8 @@ async def test_multi_step(
|
||||
pytest.skip("Multi-step with Chunked-Prefill only supports"
|
||||
"PP=1 and FLASH_ATTN backend")
|
||||
|
||||
override_backend_env_variable(monkeypatch, attention_backend)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, attention_backend)
|
||||
|
||||
prompts = example_prompts
|
||||
if len(prompts) < num_prompts:
|
||||
@ -135,8 +136,10 @@ async def test_multi_step(
|
||||
|
||||
# Assert multi-step scheduling produces nearly-identical logprobs
|
||||
# to single-step scheduling.
|
||||
ref_text_logprobs = get_client_text_logprob_generations(ref_completions)
|
||||
test_text_logprobs = get_client_text_logprob_generations(test_completions)
|
||||
ref_text_logprobs = get_client_text_logprob_generations(
|
||||
ref_completions)
|
||||
test_text_logprobs = get_client_text_logprob_generations(
|
||||
test_completions)
|
||||
check_logprobs_close(
|
||||
outputs_0_lst=ref_text_logprobs,
|
||||
outputs_1_lst=test_text_logprobs,
|
||||
@ -152,7 +155,7 @@ async def test_multi_step(
|
||||
async def test_multi_step_pp_smoke(
|
||||
tp_size: int,
|
||||
pp_size: int,
|
||||
monkeypatch,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
) -> None:
|
||||
"""
|
||||
Smoke test for the vLLM engine with multi-step scheduling in an
|
||||
@ -174,7 +177,8 @@ async def test_multi_step_pp_smoke(
|
||||
attention_backend = "FLASH_ATTN"
|
||||
max_num_seqs = 3
|
||||
|
||||
override_backend_env_variable(monkeypatch, attention_backend)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, attention_backend)
|
||||
|
||||
# Prompt from the ShareGPT dataset
|
||||
prompts = [
|
||||
|
@ -7,7 +7,7 @@ from typing import Optional
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.kernels.utils import override_backend_env_variable
|
||||
from vllm.utils import STR_BACKEND_ENV_VAR
|
||||
|
||||
from ..models.utils import check_logprobs_close, check_outputs_equal
|
||||
|
||||
@ -42,7 +42,7 @@ def test_multi_step_llm(
|
||||
num_prompts: int,
|
||||
num_logprobs: Optional[int],
|
||||
attention_backend: str,
|
||||
monkeypatch,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
) -> None:
|
||||
"""Test vLLM engine with multi-step scheduling via sync LLM Engine.
|
||||
|
||||
@ -70,7 +70,8 @@ def test_multi_step_llm(
|
||||
num_logprobs: corresponds to the `logprobs` argument to the OpenAI
|
||||
completions endpoint; `None` -> 1 logprob returned.
|
||||
"""
|
||||
override_backend_env_variable(monkeypatch, attention_backend)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, attention_backend)
|
||||
|
||||
prompts = example_prompts
|
||||
if len(prompts) < num_prompts:
|
||||
@ -136,7 +137,7 @@ def test_multi_step_llm_w_prompt_logprobs(
|
||||
num_logprobs: Optional[int],
|
||||
num_prompt_logprobs: Optional[int],
|
||||
attention_backend: str,
|
||||
monkeypatch,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
) -> None:
|
||||
"""Test prompt logprobs with multi-step scheduling via sync LLM Engine.
|
||||
|
||||
@ -166,7 +167,8 @@ def test_multi_step_llm_w_prompt_logprobs(
|
||||
note that this argument is not supported by the
|
||||
OpenAI completions endpoint.
|
||||
"""
|
||||
override_backend_env_variable(monkeypatch, attention_backend)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, attention_backend)
|
||||
|
||||
prompts = example_prompts
|
||||
if len(prompts) < num_prompts:
|
||||
@ -230,7 +232,7 @@ def test_multi_step_llm_chunked_prefill_prefix_cache(
|
||||
num_prompts: int,
|
||||
num_logprobs: Optional[int],
|
||||
attention_backend: str,
|
||||
monkeypatch,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
) -> None:
|
||||
"""Test vLLM engine with multi-step+"single-step chunked prefill"+APC.
|
||||
|
||||
@ -293,13 +295,14 @@ def test_multi_step_llm_chunked_prefill_prefix_cache(
|
||||
#
|
||||
# The Incorrect scheduling behavior - if it occurs - will cause an exception
|
||||
# in the model runner resulting from `do_sample=False`.
|
||||
override_backend_env_variable(monkeypatch, attention_backend)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, attention_backend)
|
||||
|
||||
assert len(example_prompts) >= 2
|
||||
challenge_prompts = copy.deepcopy(example_prompts)
|
||||
challenge_prompts[0] = ('vLLM is a high-throughput and memory-efficient '
|
||||
'inference and serving engine for LLMs.\n'
|
||||
) # 24 tok
|
||||
challenge_prompts[0] = (
|
||||
'vLLM is a high-throughput and memory-efficient '
|
||||
'inference and serving engine for LLMs.\n') # 24 tok
|
||||
challenge_prompts[1] = (
|
||||
'Briefly describe the major milestones in the '
|
||||
'development of artificial intelligence from 1950 to 2020.\n'
|
||||
@ -326,9 +329,9 @@ def test_multi_step_llm_chunked_prefill_prefix_cache(
|
||||
max_num_seqs=4,
|
||||
block_size=16,
|
||||
) as vllm_model:
|
||||
outputs_baseline = (vllm_model.generate_greedy(
|
||||
challenge_prompts, max_tokens) if num_logprobs is None else
|
||||
vllm_model.generate_greedy_logprobs(
|
||||
outputs_baseline = (
|
||||
vllm_model.generate_greedy(challenge_prompts, max_tokens) if
|
||||
num_logprobs is None else vllm_model.generate_greedy_logprobs(
|
||||
challenge_prompts, max_tokens, num_logprobs))
|
||||
|
||||
# multi-step+"single-step chunked prefill"+APC
|
||||
@ -346,9 +349,9 @@ def test_multi_step_llm_chunked_prefill_prefix_cache(
|
||||
max_num_seqs=4,
|
||||
block_size=16,
|
||||
) as vllm_model:
|
||||
outputs_w_features = (vllm_model.generate_greedy(
|
||||
challenge_prompts, max_tokens) if num_logprobs is None else
|
||||
vllm_model.generate_greedy_logprobs(
|
||||
outputs_w_features = (
|
||||
vllm_model.generate_greedy(challenge_prompts, max_tokens) if
|
||||
num_logprobs is None else vllm_model.generate_greedy_logprobs(
|
||||
challenge_prompts, max_tokens, num_logprobs))
|
||||
|
||||
if num_logprobs is None:
|
||||
|
@ -1,5 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import os
|
||||
|
||||
import neuronxcc.nki.language as nl
|
||||
import pytest
|
||||
@ -99,6 +98,7 @@ def ref_block_tables_transform(
|
||||
)
|
||||
@torch.inference_mode()
|
||||
def test_load_and_transform_block_tables(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
num_tiles,
|
||||
num_blocks_per_tile,
|
||||
q_head_per_kv_head,
|
||||
@ -108,12 +108,12 @@ def test_load_and_transform_block_tables(
|
||||
|
||||
device = xm.xla_device()
|
||||
|
||||
compiler_flags = [
|
||||
compiler_flags_str = " ".join([
|
||||
"-O1",
|
||||
"--retry_failed_compilation",
|
||||
]
|
||||
compiler_flags_str = " ".join(compiler_flags)
|
||||
os.environ["NEURON_CC_FLAGS"] = compiler_flags_str
|
||||
])
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("NEURON_CC_FLAGS", compiler_flags_str)
|
||||
|
||||
torch.manual_seed(10000)
|
||||
torch.set_printoptions(sci_mode=False)
|
||||
|
@ -320,6 +320,7 @@ def get_active_block_tables(block_tables, query_lens, seq_lens, block_size,
|
||||
])
|
||||
@torch.inference_mode()
|
||||
def test_contexted_kv_attention(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
prefill_batch_size: int,
|
||||
decode_batch_size: int,
|
||||
num_heads: int,
|
||||
@ -329,7 +330,6 @@ def test_contexted_kv_attention(
|
||||
large_tile_size,
|
||||
mixed_precision: bool,
|
||||
) -> None:
|
||||
import os
|
||||
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
@ -340,12 +340,12 @@ def test_contexted_kv_attention(
|
||||
|
||||
device = xm.xla_device()
|
||||
|
||||
compiler_flags = [
|
||||
compiler_flags_str = " ".join([
|
||||
"-O1",
|
||||
"--retry_failed_compilation",
|
||||
]
|
||||
compiler_flags_str = " ".join(compiler_flags)
|
||||
os.environ["NEURON_CC_FLAGS"] = compiler_flags_str
|
||||
])
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("NEURON_CC_FLAGS", compiler_flags_str)
|
||||
|
||||
torch.manual_seed(0)
|
||||
torch.set_printoptions(sci_mode=False)
|
||||
@ -415,7 +415,8 @@ def test_contexted_kv_attention(
|
||||
num_active_blocks = pad_to_multiple(num_active_blocks,
|
||||
large_tile_size // block_size)
|
||||
context_kv_len = num_active_blocks * block_size
|
||||
assert (context_kv_len %
|
||||
assert (
|
||||
context_kv_len %
|
||||
large_tile_size == 0), f"invalid context_kv_len={context_kv_len}"
|
||||
|
||||
# pad QKV tensors
|
||||
@ -476,9 +477,11 @@ def test_contexted_kv_attention(
|
||||
"constant",
|
||||
0,
|
||||
).bool()
|
||||
attn_mask = torch.concat([prior_mask_padded, active_mask_padded], dim=1)
|
||||
attn_mask = torch.concat([prior_mask_padded, active_mask_padded],
|
||||
dim=1)
|
||||
|
||||
attn_mask = reorder_context_mask(attn_mask, large_tile_size, block_size)
|
||||
attn_mask = reorder_context_mask(attn_mask, large_tile_size,
|
||||
block_size)
|
||||
|
||||
input_args = (
|
||||
query.to(device=device),
|
||||
@ -508,6 +511,7 @@ def test_contexted_kv_attention(
|
||||
"constant",
|
||||
0,
|
||||
)
|
||||
output_ref = output_ref_padded.transpose(0, 1)[0, :num_actual_tokens, :, :]
|
||||
output_ref = output_ref_padded.transpose(
|
||||
0, 1)[0, :num_actual_tokens, :, :]
|
||||
|
||||
torch.testing.assert_close(output_nki, output_ref, atol=1e-2, rtol=0)
|
||||
|
@ -1,10 +1,10 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from tests.kernels.utils import override_backend_env_variable
|
||||
from vllm.attention.selector import get_attn_backend
|
||||
from vllm.utils import STR_INVALID_VAL
|
||||
from vllm.utils import STR_BACKEND_ENV_VAR, STR_INVALID_VAL
|
||||
|
||||
|
||||
def test_platform_plugins():
|
||||
@ -25,8 +25,9 @@ def test_platform_plugins():
|
||||
f" is loaded. The first import:\n{_init_trace}")
|
||||
|
||||
|
||||
def test_oot_attention_backend(monkeypatch):
|
||||
def test_oot_attention_backend(monkeypatch: pytest.MonkeyPatch):
|
||||
# ignore the backend env variable if it is set
|
||||
override_backend_env_variable(monkeypatch, STR_INVALID_VAL)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, STR_INVALID_VAL)
|
||||
backend = get_attn_backend(16, torch.float16, torch.float16, 16, False)
|
||||
assert backend.get_name() == "Dummy_Backend"
|
||||
|
@ -22,8 +22,9 @@ class DummyV1Scheduler(V1Scheduler):
|
||||
raise Exception("Exception raised by DummyV1Scheduler")
|
||||
|
||||
|
||||
def test_scheduler_plugins_v0(monkeypatch):
|
||||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||||
def test_scheduler_plugins_v0(monkeypatch: pytest.MonkeyPatch):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "0")
|
||||
with pytest.raises(Exception) as exception_info:
|
||||
|
||||
engine_args = EngineArgs(
|
||||
@ -38,14 +39,16 @@ def test_scheduler_plugins_v0(monkeypatch):
|
||||
engine.add_request("0", "foo", sampling_params)
|
||||
engine.step()
|
||||
|
||||
assert str(exception_info.value) == "Exception raised by DummyV0Scheduler"
|
||||
assert str(
|
||||
exception_info.value) == "Exception raised by DummyV0Scheduler"
|
||||
|
||||
|
||||
def test_scheduler_plugins_v1(monkeypatch):
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1")
|
||||
# Explicitly turn off engine multiprocessing so that the scheduler runs in
|
||||
# this process
|
||||
monkeypatch.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", "0")
|
||||
def test_scheduler_plugins_v1(monkeypatch: pytest.MonkeyPatch):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
# Explicitly turn off engine multiprocessing so
|
||||
# that the scheduler runs in this process
|
||||
m.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", "0")
|
||||
|
||||
with pytest.raises(Exception) as exception_info:
|
||||
|
||||
@ -61,4 +64,5 @@ def test_scheduler_plugins_v1(monkeypatch):
|
||||
engine.add_request("0", "foo", sampling_params)
|
||||
engine.step()
|
||||
|
||||
assert str(exception_info.value) == "Exception raised by DummyV1Scheduler"
|
||||
assert str(
|
||||
exception_info.value) == "Exception raised by DummyV1Scheduler"
|
||||
|
@ -4,25 +4,29 @@
|
||||
Run `pytest tests/prefix_caching/test_prefix_caching.py`.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.conftest import VllmRunner
|
||||
from tests.core.utils import SchedulerProxy, create_dummy_prompt
|
||||
from tests.kernels.utils import override_backend_env_variable
|
||||
from vllm import SamplingParams, TokensPrompt
|
||||
from vllm.core.scheduler import Scheduler
|
||||
from vllm.engine.llm_engine import LLMEngine
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import STR_BACKEND_ENV_VAR
|
||||
|
||||
from ..models.utils import check_outputs_equal
|
||||
|
||||
|
||||
@pytest.fixture(scope="function", autouse=True)
|
||||
def use_v0_only(monkeypatch):
|
||||
def use_v0_only(monkeypatch: pytest.MonkeyPatch):
|
||||
"""
|
||||
This module relies on V0 internals, so set VLLM_USE_V1=0.
|
||||
"""
|
||||
monkeypatch.setenv('VLLM_USE_V1', '0')
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv('VLLM_USE_V1', '0')
|
||||
yield
|
||||
|
||||
|
||||
MODELS = [
|
||||
@ -56,7 +60,7 @@ def test_mixed_requests(
|
||||
cached_position: int,
|
||||
enable_chunked_prefill: bool,
|
||||
block_size: int,
|
||||
monkeypatch,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
) -> None:
|
||||
"""
|
||||
Test the case when some sequences have the prefix cache hit
|
||||
@ -67,7 +71,8 @@ def test_mixed_requests(
|
||||
pytest.skip("Flashinfer does not support ROCm/HIP.")
|
||||
if backend == "XFORMERS" and current_platform.is_rocm():
|
||||
pytest.skip("Xformers does not support ROCm/HIP.")
|
||||
override_backend_env_variable(monkeypatch, backend)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, backend)
|
||||
|
||||
with hf_runner(model, dtype=dtype) as hf_model:
|
||||
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
|
||||
@ -81,11 +86,14 @@ def test_mixed_requests(
|
||||
block_size=block_size,
|
||||
) as vllm_model:
|
||||
# Run the first prompt so the cache is populated
|
||||
vllm_outputs = vllm_model.generate_greedy([cached_prompt], max_tokens)
|
||||
vllm_outputs = vllm_model.generate_greedy([cached_prompt],
|
||||
max_tokens)
|
||||
|
||||
# Run all the promopts
|
||||
greedy_params = SamplingParams(temperature=0.0, max_tokens=max_tokens)
|
||||
req_outputs = vllm_model.model.generate(example_prompts, greedy_params)
|
||||
greedy_params = SamplingParams(temperature=0.0,
|
||||
max_tokens=max_tokens)
|
||||
req_outputs = vllm_model.model.generate(example_prompts,
|
||||
greedy_params)
|
||||
|
||||
# Verify number of cached tokens
|
||||
for i in range(len(req_outputs)):
|
||||
@ -95,8 +103,8 @@ def test_mixed_requests(
|
||||
block_size) * block_size
|
||||
else:
|
||||
expected_num_cached_tokens = 0
|
||||
assert (
|
||||
req_outputs[i].num_cached_tokens == expected_num_cached_tokens)
|
||||
assert (req_outputs[i].num_cached_tokens ==
|
||||
expected_num_cached_tokens)
|
||||
|
||||
vllm_outputs = [(
|
||||
output.prompt_token_ids + list(output.outputs[0].token_ids),
|
||||
@ -115,14 +123,15 @@ def test_mixed_requests(
|
||||
def test_unstable_prompt_sequence(
|
||||
vllm_runner,
|
||||
backend: str,
|
||||
monkeypatch,
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
) -> None:
|
||||
|
||||
if backend == "FLASHINFER" and current_platform.is_rocm():
|
||||
pytest.skip("Flashinfer does not support ROCm/HIP.")
|
||||
if backend == "XFORMERS" and current_platform.is_rocm():
|
||||
pytest.skip("Xformers does not support ROCm/HIP.")
|
||||
override_backend_env_variable(monkeypatch, backend)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(STR_BACKEND_ENV_VAR, backend)
|
||||
|
||||
with vllm_runner(
|
||||
"Qwen/Qwen2.5-0.5B-Instruct",
|
||||
|
@ -56,12 +56,11 @@ def test_gc():
|
||||
assert allocated < 50 * 1024 * 1024
|
||||
|
||||
|
||||
def test_model_from_modelscope(monkeypatch):
|
||||
def test_model_from_modelscope(monkeypatch: pytest.MonkeyPatch):
|
||||
# model: https://modelscope.cn/models/qwen/Qwen1.5-0.5B-Chat/summary
|
||||
MODELSCOPE_MODEL_NAME = "qwen/Qwen1.5-0.5B-Chat"
|
||||
monkeypatch.setenv("VLLM_USE_MODELSCOPE", "True")
|
||||
try:
|
||||
llm = LLM(model=MODELSCOPE_MODEL_NAME)
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_MODELSCOPE", "True")
|
||||
llm = LLM(model="qwen/Qwen1.5-0.5B-Chat")
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
@ -73,10 +72,3 @@ def test_model_from_modelscope(monkeypatch):
|
||||
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
assert len(outputs) == 4
|
||||
finally:
|
||||
monkeypatch.delenv("VLLM_USE_MODELSCOPE", raising=False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import pytest
|
||||
pytest.main([__file__])
|
||||
|
@ -1,7 +1,7 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# ruff: noqa
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
import socket
|
||||
from collections.abc import AsyncIterator
|
||||
from unittest.mock import patch
|
||||
@ -112,8 +112,9 @@ def test_deprecate_kwargs_additional_message():
|
||||
dummy(old_arg=1)
|
||||
|
||||
|
||||
def test_get_open_port():
|
||||
os.environ["VLLM_PORT"] = "5678"
|
||||
def test_get_open_port(monkeypatch: pytest.MonkeyPatch):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_PORT", "5678")
|
||||
# make sure we can get multiple ports, even if the env var is set
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s1:
|
||||
s1.bind(("localhost", get_open_port()))
|
||||
@ -121,7 +122,6 @@ def test_get_open_port():
|
||||
s2.bind(("localhost", get_open_port()))
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s3:
|
||||
s3.bind(("localhost", get_open_port()))
|
||||
os.environ.pop("VLLM_PORT")
|
||||
|
||||
|
||||
# Tests for FlexibleArgumentParser
|
||||
@ -366,9 +366,10 @@ def test_bind_kv_cache_non_attention():
|
||||
assert ctx['model.layers.28.attn'].kv_cache[0] is kv_cache[1]
|
||||
|
||||
|
||||
def test_bind_kv_cache_encoder_decoder(monkeypatch):
|
||||
def test_bind_kv_cache_encoder_decoder(monkeypatch: pytest.MonkeyPatch):
|
||||
# V1 TESTS: ENCODER_DECODER is not supported on V1 yet.
|
||||
monkeypatch.setenv("VLLM_USE_V1", "0")
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "0")
|
||||
|
||||
from vllm.attention import Attention, AttentionType
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
import pytest
|
||||
|
||||
from vllm.config import CompilationLevel
|
||||
|
||||
@ -9,10 +9,11 @@ from ..utils import compare_two_settings
|
||||
# --enforce-eager on TPU causes graph compilation
|
||||
# this times out default Health Check in the MQLLMEngine,
|
||||
# so we set the timeout here to 30s
|
||||
os.environ["VLLM_RPC_TIMEOUT"] = "30000"
|
||||
|
||||
|
||||
def test_custom_dispatcher():
|
||||
def test_custom_dispatcher(monkeypatch: pytest.MonkeyPatch):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_RPC_TIMEOUT", "30000")
|
||||
compare_two_settings(
|
||||
"google/gemma-2b",
|
||||
arg1=[
|
||||
|
@ -1,10 +1,12 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# ruff: noqa
|
||||
# type: ignore
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import threading
|
||||
from collections.abc import Iterable
|
||||
from concurrent import futures
|
||||
from typing import Callable, Literal
|
||||
from typing import Callable, Generator, Literal
|
||||
|
||||
import grpc
|
||||
import pytest
|
||||
@ -21,12 +23,14 @@ from vllm.tracing import SpanAttributes
|
||||
|
||||
|
||||
@pytest.fixture(scope="function", autouse=True)
|
||||
def use_v0_only(monkeypatch):
|
||||
def use_v0_only(monkeypatch: pytest.MonkeyPatch):
|
||||
"""
|
||||
Since this module is V0 only, set VLLM_USE_V1=0 for
|
||||
all tests in the module.
|
||||
"""
|
||||
monkeypatch.setenv('VLLM_USE_V1', '0')
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv('VLLM_USE_V1', '0')
|
||||
yield
|
||||
|
||||
|
||||
FAKE_TRACE_SERVER_ADDRESS = "localhost:4317"
|
||||
@ -67,7 +71,7 @@ class FakeTraceService(TraceServiceServicer):
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def trace_service():
|
||||
def trace_service() -> Generator[FakeTraceService, None, None]:
|
||||
"""Fixture to set up a fake gRPC trace service"""
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=1))
|
||||
service = FakeTraceService()
|
||||
@ -80,12 +84,18 @@ def trace_service():
|
||||
server.stop(None)
|
||||
|
||||
|
||||
def test_traces(trace_service):
|
||||
os.environ[OTEL_EXPORTER_OTLP_TRACES_INSECURE] = "true"
|
||||
def test_traces(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
trace_service: FakeTraceService,
|
||||
):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(OTEL_EXPORTER_OTLP_TRACES_INSECURE, "true")
|
||||
|
||||
sampling_params = SamplingParams(temperature=0.01,
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.01,
|
||||
top_p=0.1,
|
||||
max_tokens=256)
|
||||
max_tokens=256,
|
||||
)
|
||||
model = "facebook/opt-125m"
|
||||
llm = LLM(
|
||||
model=model,
|
||||
@ -120,17 +130,19 @@ def test_traces(trace_service):
|
||||
) == sampling_params.temperature
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_REQUEST_TOP_P) == sampling_params.top_p
|
||||
assert attributes.get(SpanAttributes.GEN_AI_REQUEST_MAX_TOKENS
|
||||
) == sampling_params.max_tokens
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_REQUEST_MAX_TOKENS) == sampling_params.max_tokens
|
||||
assert attributes.get(SpanAttributes.GEN_AI_REQUEST_N) == sampling_params.n
|
||||
assert attributes.get(SpanAttributes.GEN_AI_USAGE_PROMPT_TOKENS) == len(
|
||||
SpanAttributes.GEN_AI_REQUEST_N) == sampling_params.n
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_USAGE_PROMPT_TOKENS) == len(
|
||||
outputs[0].prompt_token_ids)
|
||||
completion_tokens = sum(len(o.token_ids) for o in outputs[0].outputs)
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_USAGE_COMPLETION_TOKENS) == completion_tokens
|
||||
metrics = outputs[0].metrics
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_LATENCY_TIME_IN_QUEUE) == metrics.time_in_queue
|
||||
assert attributes.get(SpanAttributes.GEN_AI_LATENCY_TIME_IN_QUEUE
|
||||
) == metrics.time_in_queue
|
||||
ttft = metrics.first_token_time - metrics.arrival_time
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_LATENCY_TIME_TO_FIRST_TOKEN) == ttft
|
||||
@ -145,12 +157,18 @@ def test_traces(trace_service):
|
||||
assert metrics.model_execute_time is None
|
||||
|
||||
|
||||
def test_traces_with_detailed_steps(trace_service):
|
||||
os.environ[OTEL_EXPORTER_OTLP_TRACES_INSECURE] = "true"
|
||||
def test_traces_with_detailed_steps(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
trace_service: FakeTraceService,
|
||||
):
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv(OTEL_EXPORTER_OTLP_TRACES_INSECURE, "true")
|
||||
|
||||
sampling_params = SamplingParams(temperature=0.01,
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.01,
|
||||
top_p=0.1,
|
||||
max_tokens=256)
|
||||
max_tokens=256,
|
||||
)
|
||||
model = "facebook/opt-125m"
|
||||
llm = LLM(
|
||||
model=model,
|
||||
@ -186,17 +204,19 @@ def test_traces_with_detailed_steps(trace_service):
|
||||
) == sampling_params.temperature
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_REQUEST_TOP_P) == sampling_params.top_p
|
||||
assert attributes.get(SpanAttributes.GEN_AI_REQUEST_MAX_TOKENS
|
||||
) == sampling_params.max_tokens
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_REQUEST_MAX_TOKENS) == sampling_params.max_tokens
|
||||
assert attributes.get(SpanAttributes.GEN_AI_REQUEST_N) == sampling_params.n
|
||||
assert attributes.get(SpanAttributes.GEN_AI_USAGE_PROMPT_TOKENS) == len(
|
||||
SpanAttributes.GEN_AI_REQUEST_N) == sampling_params.n
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_USAGE_PROMPT_TOKENS) == len(
|
||||
outputs[0].prompt_token_ids)
|
||||
completion_tokens = sum(len(o.token_ids) for o in outputs[0].outputs)
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_USAGE_COMPLETION_TOKENS) == completion_tokens
|
||||
metrics = outputs[0].metrics
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_LATENCY_TIME_IN_QUEUE) == metrics.time_in_queue
|
||||
assert attributes.get(SpanAttributes.GEN_AI_LATENCY_TIME_IN_QUEUE
|
||||
) == metrics.time_in_queue
|
||||
ttft = metrics.first_token_time - metrics.arrival_time
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_LATENCY_TIME_TO_FIRST_TOKEN) == ttft
|
||||
@ -207,9 +227,10 @@ def test_traces_with_detailed_steps(trace_service):
|
||||
) == metrics.scheduler_time
|
||||
assert metrics.model_forward_time > 0
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_FORWARD) == pytest.approx(
|
||||
metrics.model_forward_time / 1000)
|
||||
SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_FORWARD
|
||||
) == pytest.approx(metrics.model_forward_time / 1000)
|
||||
assert metrics.model_execute_time > 0
|
||||
assert attributes.get(SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_EXECUTE
|
||||
assert attributes.get(
|
||||
SpanAttributes.GEN_AI_LATENCY_TIME_IN_MODEL_EXECUTE
|
||||
) == metrics.model_execute_time
|
||||
assert metrics.model_forward_time < 1000 * metrics.model_execute_time
|
||||
|
@ -566,6 +566,7 @@ def init_test_distributed_environment(
|
||||
|
||||
|
||||
def multi_process_parallel(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
tp_size: int,
|
||||
pp_size: int,
|
||||
test_target: Any,
|
||||
@ -582,7 +583,13 @@ def multi_process_parallel(
|
||||
refs = []
|
||||
for rank in range(tp_size * pp_size):
|
||||
refs.append(
|
||||
test_target.remote(tp_size, pp_size, rank, distributed_init_port))
|
||||
test_target.remote(
|
||||
monkeypatch,
|
||||
tp_size,
|
||||
pp_size,
|
||||
rank,
|
||||
distributed_init_port,
|
||||
), )
|
||||
ray.get(refs)
|
||||
|
||||
ray.shutdown()
|
||||
|
@ -1,5 +1,8 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
from __future__ import annotations
|
||||
|
||||
import random
|
||||
from typing import Any
|
||||
|
||||
import pytest
|
||||
|
||||
@ -50,8 +53,12 @@ def model_name():
|
||||
return "meta-llama/Meta-Llama-3-8B-Instruct"
|
||||
|
||||
|
||||
def test_ngram_correctness(monkeypatch, test_prompts, sampling_config,
|
||||
model_name):
|
||||
def test_ngram_correctness(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
test_prompts: list[list[dict[str, Any]]],
|
||||
sampling_config: SamplingParams,
|
||||
model_name: str,
|
||||
):
|
||||
'''
|
||||
Compare the outputs of a original LLM and a speculative LLM
|
||||
should be the same when using ngram speculative decoding.
|
||||
|
@ -80,9 +80,11 @@ async def generate(engine: AsyncLLM,
|
||||
[(TEXT_ENGINE_ARGS, TEXT_PROMPT),
|
||||
(VISION_ENGINE_ARGS, VISION_PROMPT)])
|
||||
@pytest.mark.asyncio
|
||||
async def test_load(monkeypatch, output_kind: RequestOutputKind,
|
||||
engine_args_and_prompt: tuple[AsyncEngineArgs,
|
||||
PromptType]):
|
||||
async def test_load(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
output_kind: RequestOutputKind,
|
||||
engine_args_and_prompt: tuple[AsyncEngineArgs, PromptType],
|
||||
):
|
||||
# TODO(rickyx): Remove monkeypatch once we have a better way to test V1
|
||||
# so that in the future when we switch, we don't have to change all the
|
||||
# tests.
|
||||
@ -126,7 +128,8 @@ async def test_load(monkeypatch, output_kind: RequestOutputKind,
|
||||
[(TEXT_ENGINE_ARGS, TEXT_PROMPT),
|
||||
(VISION_ENGINE_ARGS, VISION_PROMPT)])
|
||||
@pytest.mark.asyncio
|
||||
async def test_abort(monkeypatch, output_kind: RequestOutputKind,
|
||||
async def test_abort(monkeypatch: pytest.MonkeyPatch,
|
||||
output_kind: RequestOutputKind,
|
||||
engine_args_and_prompt: tuple[AsyncEngineArgs,
|
||||
PromptType]):
|
||||
|
||||
|
@ -45,7 +45,7 @@ def make_request() -> EngineCoreRequest:
|
||||
|
||||
|
||||
@fork_new_process_for_each_test
|
||||
def test_engine_core(monkeypatch):
|
||||
def test_engine_core(monkeypatch: pytest.MonkeyPatch):
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
@ -159,7 +159,7 @@ def test_engine_core(monkeypatch):
|
||||
|
||||
|
||||
@fork_new_process_for_each_test
|
||||
def test_engine_core_advanced_sampling(monkeypatch):
|
||||
def test_engine_core_advanced_sampling(monkeypatch: pytest.MonkeyPatch):
|
||||
"""
|
||||
A basic end-to-end test to verify that the engine functions correctly
|
||||
when additional sampling parameters, such as top_p, min_tokens, and
|
||||
@ -209,7 +209,7 @@ def test_engine_core_advanced_sampling(monkeypatch):
|
||||
|
||||
|
||||
@fork_new_process_for_each_test
|
||||
def test_engine_core_concurrent_batches(monkeypatch):
|
||||
def test_engine_core_concurrent_batches(monkeypatch: pytest.MonkeyPatch):
|
||||
"""
|
||||
Test that the engine can handle multiple concurrent batches.
|
||||
"""
|
||||
|
@ -90,7 +90,8 @@ def echo(self, msg: str, err_msg: Optional[str] = None) -> str:
|
||||
|
||||
@fork_new_process_for_each_test
|
||||
@pytest.mark.parametrize("multiprocessing_mode", [True, False])
|
||||
def test_engine_core_client(monkeypatch, multiprocessing_mode: bool):
|
||||
def test_engine_core_client(monkeypatch: pytest.MonkeyPatch,
|
||||
multiprocessing_mode: bool):
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
@ -175,7 +176,7 @@ def test_engine_core_client(monkeypatch, multiprocessing_mode: bool):
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="function")
|
||||
async def test_engine_core_client_asyncio(monkeypatch):
|
||||
async def test_engine_core_client_asyncio(monkeypatch: pytest.MonkeyPatch):
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
|
@ -255,12 +255,10 @@ def _run_and_validate(
|
||||
[NONE, SAMPLE, PROMPT, SAMPLE_PROMPT])
|
||||
@pytest.mark.parametrize("temperature", [0.0, 2.0])
|
||||
def test_get_logprobs_and_prompt_logprobs(
|
||||
hf_model,
|
||||
vllm_model,
|
||||
hf_model, vllm_model,
|
||||
batch_logprobs_composition: BatchLogprobsComposition,
|
||||
temperature: float,
|
||||
example_prompts,
|
||||
) -> None:
|
||||
temperature: float, example_prompts: list[str],
|
||||
monkeypatch: pytest.MonkeyPatch) -> None:
|
||||
"""Test V1 Engine logprobs & prompt logprobs
|
||||
|
||||
Exercise a variety of combinations of `logprobs` and `prompt_logprobs`
|
||||
@ -287,6 +285,8 @@ def test_get_logprobs_and_prompt_logprobs(
|
||||
temperature: "temperature" sampling parameter
|
||||
example_prompts: example prompt fixture
|
||||
"""
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
do_apc = vllm_model.model.llm_engine.cache_config.enable_prefix_caching
|
||||
if do_apc and (temperature < 2.0
|
||||
or batch_logprobs_composition != SAMPLE_PROMPT):
|
||||
@ -306,7 +306,8 @@ def test_get_logprobs_and_prompt_logprobs(
|
||||
|
||||
# Batch has mixed sample params
|
||||
# (different logprobs/prompt logprobs combos)
|
||||
logprob_prompt_logprob_list = get_test_batch(batch_logprobs_composition)
|
||||
logprob_prompt_logprob_list = get_test_batch(
|
||||
batch_logprobs_composition)
|
||||
|
||||
# Ensure that each test prompt has a logprob config for testing
|
||||
logprob_prompt_logprob_list = _repeat_logprob_config(
|
||||
@ -333,16 +334,13 @@ def test_get_logprobs_and_prompt_logprobs(
|
||||
do_apc=do_apc)
|
||||
|
||||
|
||||
def test_max_logprobs():
|
||||
def test_max_logprobs(monkeypatch: pytest.MonkeyPatch):
|
||||
"""vLLM v1 engine should fail a request with `logprobs > max_logprobs`
|
||||
|
||||
Should also fail for `prompt_logprobs > max_logprobs`
|
||||
|
||||
APC should not matter as this test checks basic request validation.
|
||||
|
||||
Args:
|
||||
monkeypatch
|
||||
"""
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
|
||||
runner = VllmRunner("facebook/opt-125m",
|
||||
max_logprobs=1,
|
||||
@ -354,40 +352,52 @@ def test_max_logprobs():
|
||||
|
||||
bad_sampling_params = SamplingParams(logprobs=2)
|
||||
with pytest.raises(ValueError):
|
||||
runner.generate(["Hello world"], sampling_params=bad_sampling_params)
|
||||
runner.generate(["Hello world"],
|
||||
sampling_params=bad_sampling_params)
|
||||
|
||||
|
||||
def test_none_logprobs(vllm_model, example_prompts):
|
||||
def test_none_logprobs(vllm_model, example_prompts,
|
||||
monkeypatch: pytest.MonkeyPatch):
|
||||
"""Engine should return `logprobs` and `prompt_logprobs` as `None`
|
||||
|
||||
Args:
|
||||
vllm_model: vLLM model fixture
|
||||
example_prompts: list of example prompts (test fixture)
|
||||
"""
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
max_tokens = 5
|
||||
|
||||
sampling_params_logprobs_none = SamplingParams(max_tokens=max_tokens,
|
||||
sampling_params_logprobs_none = SamplingParams(
|
||||
max_tokens=max_tokens,
|
||||
logprobs=None,
|
||||
prompt_logprobs=None,
|
||||
temperature=0.0)
|
||||
temperature=0.0,
|
||||
)
|
||||
results_logprobs_none = vllm_model.model.generate(
|
||||
example_prompts, sampling_params=sampling_params_logprobs_none)
|
||||
example_prompts,
|
||||
sampling_params=sampling_params_logprobs_none,
|
||||
)
|
||||
|
||||
for i in range(len(results_logprobs_none)):
|
||||
# Check sample logprobs are None
|
||||
assert results_logprobs_none[i].outputs[0].logprobs is None
|
||||
assert results_logprobs_none[i].outputs[0].cumulative_logprob is None
|
||||
assert results_logprobs_none[i].outputs[
|
||||
0].cumulative_logprob is None
|
||||
# Check prompt logprobs are None
|
||||
assert results_logprobs_none[i].prompt_logprobs is None
|
||||
|
||||
|
||||
def test_zero_logprobs(vllm_model, example_prompts):
|
||||
def test_zero_logprobs(vllm_model, example_prompts,
|
||||
monkeypatch: pytest.MonkeyPatch):
|
||||
"""Engine should return sampled token and prompt token logprobs
|
||||
|
||||
Args:
|
||||
vllm_model: vLLM model fixture
|
||||
example_prompts: list of example prompts (test fixture)
|
||||
"""
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
max_tokens = 5
|
||||
|
||||
sampling_params_logprobs_zero = SamplingParams(max_tokens=max_tokens,
|
||||
|
@ -3,11 +3,16 @@
|
||||
|
||||
Run `pytest tests/v1/tpu/test_basic.py`.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from ...conftest import VllmRunner
|
||||
if TYPE_CHECKING:
|
||||
from tests.conftest import VllmRunner
|
||||
|
||||
MODELS = [
|
||||
# "Qwen/Qwen2-7B-Instruct",
|
||||
@ -28,7 +33,8 @@ TENSOR_PARALLEL_SIZES = [1]
|
||||
@pytest.mark.parametrize("enforce_eager", [True])
|
||||
@pytest.mark.parametrize("tensor_parallel_size", TENSOR_PARALLEL_SIZES)
|
||||
def test_models(
|
||||
monkeypatch,
|
||||
vllm_runner: type[VllmRunner],
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
model: str,
|
||||
max_tokens: int,
|
||||
enforce_eager: bool,
|
||||
@ -41,7 +47,7 @@ def test_models(
|
||||
with monkeypatch.context() as m:
|
||||
m.setenv("VLLM_USE_V1", "1")
|
||||
|
||||
with VllmRunner(
|
||||
with vllm_runner(
|
||||
model,
|
||||
max_model_len=8192,
|
||||
enforce_eager=enforce_eager,
|
||||
|
Loading…
x
Reference in New Issue
Block a user