[Attention] Flash Attention 3 - fp8 (#14570)

Signed-off-by: Mickael Seznec <mickael@mistral.ai>
This commit is contained in:
Mickaël Seznec 2025-03-20 06:14:20 +01:00 committed by GitHub
parent ae65f3e237
commit a597a57595
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 272 additions and 76 deletions

View File

@ -38,7 +38,7 @@ else()
FetchContent_Declare(
vllm-flash-attn
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
GIT_TAG 9bfa9869829d8c593527eb34c5271d0090f7ccc9
GIT_TAG dc9d410b3e2d6534a4c70724c2515f4def670a22
GIT_PROGRESS TRUE
# Don't share the vllm-flash-attn build between build types
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn

View File

@ -15,6 +15,7 @@ NUM_HEADS = [(4, 4), (8, 2), (16, 2)]
HEAD_SIZES = [128, 256]
BLOCK_SIZES = [16, 32]
DTYPES = [torch.float16, torch.bfloat16]
QDTYPES = [None, torch.float8_e4m3fn]
# one value large enough to test overflow in index calculation.
# one value small enough to test the schema op check
NUM_BLOCKS = [32768, 2048]
@ -85,6 +86,7 @@ def ref_paged_attn(
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("sliding_window", [None, 256])
@pytest.mark.parametrize("fa_version", [2, 3])
@pytest.mark.parametrize("q_dtype", QDTYPES)
@torch.inference_mode()
def test_flash_attn_with_paged_kv(
use_out: bool,
@ -97,11 +99,15 @@ def test_flash_attn_with_paged_kv(
num_blocks: int,
sliding_window: Optional[int],
fa_version: int,
q_dtype: Optional[torch.dtype],
) -> None:
torch.set_default_device("cuda")
if not is_fa_version_supported(fa_version):
pytest.skip(f"Flash attention version {fa_version} not supported due "
f"to: \"{fa_version_unsupported_reason(fa_version)}\"")
if q_dtype is not None and (dtype != torch.bfloat16 or fa_version == 2):
pytest.skip("Flash attention with quantized inputs is only "
"supported on version 3 with bfloat16 base type")
current_platform.seed_everything(0)
num_seqs = len(kv_lens)
@ -130,10 +136,28 @@ def test_flash_attn_with_paged_kv(
q = query.unsqueeze(1)
out = torch.empty_like(q) if use_out else None
maybe_quantized_query = q
maybe_quantized_key_cache = key_cache
maybe_quantized_value_cache = value_cache
q_descale = None
k_descale = None
v_descale = None
if q_dtype is not None:
# QKV are drawn from N(0, 1): no need for a fp8 scaling factor
maybe_quantized_query = query.to(q_dtype)
maybe_quantized_key_cache = key_cache.to(q_dtype)
maybe_quantized_value_cache = value_cache.to(q_dtype)
scale_shape = (num_seqs, num_kv_heads)
q_descale = torch.ones(scale_shape, dtype=torch.float32)
k_descale = torch.ones(scale_shape, dtype=torch.float32)
v_descale = torch.ones(scale_shape, dtype=torch.float32)
output = flash_attn_with_kvcache(
q=q,
k_cache=key_cache,
v_cache=value_cache,
q=maybe_quantized_query,
k_cache=maybe_quantized_key_cache,
v_cache=maybe_quantized_value_cache,
out=out,
softmax_scale=scale,
causal=True,
@ -142,10 +166,17 @@ def test_flash_attn_with_paged_kv(
softcap=soft_cap if soft_cap is not None else 0,
window_size=window_size,
fa_version=fa_version,
q_descale=q_descale,
k_descale=k_descale,
v_descale=v_descale,
)
output = output if not use_out else out
output = output.squeeze(1)
atol, rtol = 1.5e-2, 1e-2
if q_dtype is not None:
atol, rtol = 1.5e-1, 1.5e-1
ref_output = ref_paged_attn(query=query,
key_cache=key_cache,
value_cache=value_cache,
@ -155,7 +186,7 @@ def test_flash_attn_with_paged_kv(
scale=scale,
soft_cap=soft_cap,
sliding_window=sliding_window)
torch.testing.assert_close(output, ref_output, atol=2e-2, rtol=1e-2), \
torch.testing.assert_close(output, ref_output, atol=atol, rtol=rtol), \
f"{torch.max(torch.abs(output - ref_output))}"
@ -171,6 +202,7 @@ def test_flash_attn_with_paged_kv(
@pytest.mark.parametrize("soft_cap", [None, 10.0, 50.0])
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("fa_version", [2, 3])
@pytest.mark.parametrize("q_dtype", QDTYPES)
@torch.inference_mode()
def test_varlen_with_paged_kv(
use_out: bool,
@ -183,11 +215,15 @@ def test_varlen_with_paged_kv(
soft_cap: Optional[float],
num_blocks: int,
fa_version: int,
q_dtype: Optional[torch.dtype],
) -> None:
torch.set_default_device("cuda")
if not is_fa_version_supported(fa_version):
pytest.skip(f"Flash attention version {fa_version} not supported due "
f"to: \"{fa_version_unsupported_reason(fa_version)}\"")
if q_dtype is not None and (dtype != torch.bfloat16 or fa_version == 2):
pytest.skip("Flash attention with quantized inputs is only "
"supported on version 3 with bfloat16 base type")
current_platform.seed_everything(0)
num_seqs = len(seq_lens)
query_lens = [x[0] for x in seq_lens]
@ -223,10 +259,28 @@ def test_varlen_with_paged_kv(
dtype=torch.int32)
out = torch.empty_like(query) if use_out else None
maybe_quantized_query = query
maybe_quantized_key_cache = key_cache
maybe_quantized_value_cache = value_cache
q_descale = None
k_descale = None
v_descale = None
if q_dtype is not None:
# QKV are drawn from N(0, 1): no need for a fp8 scaling factor
maybe_quantized_query = query.to(q_dtype)
maybe_quantized_key_cache = key_cache.to(q_dtype)
maybe_quantized_value_cache = value_cache.to(q_dtype)
scale_shape = (num_seqs, num_kv_heads)
q_descale = torch.ones(scale_shape, dtype=torch.float32)
k_descale = torch.ones(scale_shape, dtype=torch.float32)
v_descale = torch.ones(scale_shape, dtype=torch.float32)
output = flash_attn_varlen_func(
q=query,
k=key_cache,
v=value_cache,
q=maybe_quantized_query,
k=maybe_quantized_key_cache,
v=maybe_quantized_value_cache,
out=out,
cu_seqlens_q=cu_query_lens,
seqused_k=kv_lens,
@ -238,6 +292,9 @@ def test_varlen_with_paged_kv(
block_table=block_tables,
softcap=soft_cap if soft_cap is not None else 0,
fa_version=fa_version,
q_descale=q_descale,
k_descale=k_descale,
v_descale=v_descale,
)
output = output if not use_out else out
@ -252,5 +309,8 @@ def test_varlen_with_paged_kv(
sliding_window=sliding_window,
soft_cap=soft_cap,
)
torch.testing.assert_close(output, ref_output, atol=2e-2, rtol=1e-2), \
atol, rtol = 1.5e-2, 1e-2
if q_dtype is not None:
atol, rtol = 1.5e-1, 1.5e-1
torch.testing.assert_close(output, ref_output, atol=atol, rtol=rtol), \
f"{torch.max(torch.abs(output - ref_output))}"

View File

@ -4,12 +4,16 @@ from vllm.attention.backends.abstract import (AttentionBackend,
AttentionMetadata,
AttentionMetadataBuilder,
AttentionState, AttentionType)
from vllm.attention.backends.utils import get_flash_attn_version
from vllm.attention.layer import Attention
from vllm.attention.selector import get_attn_backend
__all__ = [
"Attention", "AttentionBackend", "AttentionMetadata", "AttentionType",
"AttentionMetadataBuilder", "Attention", "AttentionState",
"get_attn_backend", "get_flash_attn_version"
"Attention",
"AttentionBackend",
"AttentionMetadata",
"AttentionType",
"AttentionMetadataBuilder",
"Attention",
"AttentionState",
"get_attn_backend",
]

View File

@ -232,6 +232,7 @@ class AttentionMetadataBuilder(ABC, Generic[T]):
class AttentionLayer(Protocol):
_q_scale: torch.Tensor
_k_scale: torch.Tensor
_v_scale: torch.Tensor
_k_scale_float: float

View File

@ -19,10 +19,10 @@ from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
# yapf: enable
from vllm.attention.backends.utils import (
PAD_SLOT_ID, CommonAttentionState, compute_slot_mapping,
compute_slot_mapping_start_idx, get_flash_attn_version,
get_num_prefill_decode_query_kv_tokens, get_seq_len_block_table_args,
is_all_cross_attn_metadata_set, is_all_encoder_attn_metadata_set,
is_block_tables_empty)
compute_slot_mapping_start_idx, get_num_prefill_decode_query_kv_tokens,
get_seq_len_block_table_args, is_all_cross_attn_metadata_set,
is_all_encoder_attn_metadata_set, is_block_tables_empty)
from vllm.fa_utils import get_flash_attn_version
from vllm.logger import init_logger
from vllm.multimodal import MultiModalPlaceholderMap
from vllm.utils import async_tensor_h2d, make_tensor_with_pad
@ -630,9 +630,11 @@ class FlashAttentionImpl(AttentionImpl):
self.sliding_window = ((sliding_window - 1,
0) if sliding_window is not None else (-1, -1))
self.kv_cache_dtype = kv_cache_dtype
if is_quantized_kv_cache(self.kv_cache_dtype):
self.vllm_flash_attn_version = get_flash_attn_version()
if (is_quantized_kv_cache(self.kv_cache_dtype)
and self.vllm_flash_attn_version != 3):
raise NotImplementedError(
"FlashAttention with FP8 KV cache not yet supported")
"Only FlashAttention3 supports FP8 KV cache")
if logits_soft_cap is None:
# In flash-attn, setting logits_soft_cap as 0 means no soft cap.
logits_soft_cap = 0
@ -647,7 +649,6 @@ class FlashAttentionImpl(AttentionImpl):
f"Head size {head_size} is not supported by FlashAttention. "
f"Supported head sizes are: {support_head_sizes}.")
self.attn_type = attn_type
self.vllm_flash_attn_version = get_flash_attn_version()
def forward(
self,
@ -671,13 +672,19 @@ class FlashAttentionImpl(AttentionImpl):
for profiling run.
attn_metadata: Metadata for attention.
NOTE: It in-place updates the output tensor.
NOTE: FP8 quantization, flash-attn expect the size of
{q,k,v}_descale to be (num_sequences, num_kv_heads).
We use torch's .expand() to avoid duplicating values
"""
# NOTE(woosuk): FlashAttention does not support FP8 KV cache.
assert layer._k_scale_float == 1.0 and layer._v_scale_float == 1.0, (
"key/v_scale is not supported in FlashAttention.")
assert output is not None, "Output tensor must be provided."
# NOTE(woosuk): FlashAttention2 does not support FP8 KV cache.
if self.vllm_flash_attn_version < 3 or output.dtype != torch.bfloat16:
assert (
layer._k_scale_float == 1.0 and layer._v_scale_float == 1.0), (
"key/v_scale is only supported in FlashAttention 3 with "
"base dtype bfloat16")
attn_type = self.attn_type
if (attn_type == AttentionType.ENCODER
and (not attn_metadata.is_all_encoder_attn_metadata_set)):
@ -694,6 +701,7 @@ class FlashAttentionImpl(AttentionImpl):
window_size = self.sliding_window
alibi_slopes: Optional[torch.Tensor] = self.alibi_slopes
logits_soft_cap: Optional[float] = self.logits_soft_cap
fp8_attention = kv_cache_dtype.startswith("fp8")
if kv_cache.numel() > 0:
key_cache = kv_cache[0]
@ -729,6 +737,19 @@ class FlashAttentionImpl(AttentionImpl):
layer._v_scale,
)
if fp8_attention:
kv_cache = kv_cache.view(torch.float8_e4m3fn)
key_cache = key_cache.view(torch.float8_e4m3fn)
value_cache = value_cache.view(torch.float8_e4m3fn)
if fp8_attention:
num_tokens, num_heads, head_size = query.shape
query, _ = ops.scaled_fp8_quant(
query.reshape(
(num_tokens, num_heads * head_size)).contiguous(),
layer._q_scale)
query = query.reshape((num_tokens, num_heads, head_size))
(num_prefill_query_tokens, num_prefill_kv_tokens,
num_decode_query_tokens) = \
get_num_prefill_decode_query_kv_tokens(attn_metadata, attn_type)
@ -753,6 +774,23 @@ class FlashAttentionImpl(AttentionImpl):
key = key[:num_prefill_kv_tokens]
value = value[:num_prefill_kv_tokens]
if fp8_attention:
num_kv_tokens, num_kv_heads, head_size = key.shape
key, _ = ops.scaled_fp8_quant(
key.reshape((num_kv_tokens,
num_kv_heads * head_size)).contiguous(),
layer._k_scale)
key = key.reshape((num_kv_tokens, num_kv_heads, head_size))
value, _ = ops.scaled_fp8_quant(
value.reshape((num_kv_tokens,
num_kv_heads * head_size)).contiguous(),
layer._v_scale)
value = value.reshape(
(num_kv_tokens, num_kv_heads, head_size))
descale_shape = (q_seq_start_loc.shape[0] - 1, key.shape[1])
flash_attn_varlen_func(
q=query,
k=key,
@ -768,13 +806,19 @@ class FlashAttentionImpl(AttentionImpl):
softcap=logits_soft_cap,
out=prefill_output,
fa_version=self.vllm_flash_attn_version,
q_descale=layer._q_scale.expand(descale_shape),
k_descale=layer._k_scale.expand(descale_shape),
v_descale=layer._v_scale.expand(descale_shape),
)
else:
# prefix-enabled attention
assert attn_type == AttentionType.DECODER, (
"Only decoder-only models support prefix caching")
assert prefill_meta.seq_lens is not None
assert prefill_meta.query_start_loc is not None
max_seq_len = max(prefill_meta.seq_lens)
descale_shape = (prefill_meta.query_start_loc.shape[0] - 1,
key.shape[1])
flash_attn_varlen_func( # noqa
q=query,
k=key_cache,
@ -791,6 +835,9 @@ class FlashAttentionImpl(AttentionImpl):
softcap=logits_soft_cap,
out=prefill_output,
fa_version=self.vllm_flash_attn_version,
q_descale=layer._q_scale.expand(descale_shape),
k_descale=layer._k_scale.expand(descale_shape),
v_descale=layer._v_scale.expand(descale_shape),
)
if decode_meta := attn_metadata.decode_metadata:
@ -804,6 +851,9 @@ class FlashAttentionImpl(AttentionImpl):
assert attn_type == AttentionType.DECODER, (
"Only decoder-only models support max_decode_query_len > 1"
)
assert decode_meta.query_start_loc is not None
descale_shape = (decode_meta.query_start_loc.shape[0] - 1,
key.shape[1])
flash_attn_varlen_func(
q=decode_query,
k=key_cache,
@ -820,6 +870,9 @@ class FlashAttentionImpl(AttentionImpl):
block_table=decode_meta.block_tables,
out=decode_output,
fa_version=self.vllm_flash_attn_version,
q_descale=layer._q_scale.expand(descale_shape),
k_descale=layer._k_scale.expand(descale_shape),
v_descale=layer._v_scale.expand(descale_shape),
)
else:
# Use flash_attn_with_kvcache for normal decoding.
@ -828,6 +881,7 @@ class FlashAttentionImpl(AttentionImpl):
_,
block_tables_arg,
) = get_seq_len_block_table_args(decode_meta, False, attn_type)
descale_shape = (seq_lens_arg.shape[0], key_cache.shape[-2])
flash_attn_with_kvcache(
q=decode_query.unsqueeze(1),
k_cache=key_cache,
@ -841,6 +895,9 @@ class FlashAttentionImpl(AttentionImpl):
softcap=logits_soft_cap,
out=decode_output.unsqueeze(1),
fa_version=self.vllm_flash_attn_version,
q_descale=layer._q_scale.expand(descale_shape),
k_descale=layer._k_scale.expand(descale_shape),
v_descale=layer._v_scale.expand(descale_shape),
)
return output

View File

@ -203,9 +203,9 @@ from vllm.attention.backends.abstract import (AttentionBackend, AttentionLayer,
AttentionState, MLAAttentionImpl)
from vllm.attention.backends.utils import (PAD_SLOT_ID, compute_slot_mapping,
compute_slot_mapping_start_idx,
get_flash_attn_version,
is_block_tables_empty)
from vllm.attention.ops.triton_merge_attn_states import merge_attn_states
from vllm.fa_utils import get_flash_attn_version
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearBase, RowParallelLinear,
UnquantizedLinearMethod)

View File

@ -8,13 +8,11 @@ from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Type, TypeVar, Union
import numpy as np
import torch
from vllm import envs
from vllm.attention import (AttentionMetadata, AttentionMetadataBuilder,
AttentionState)
from vllm.attention.backends.abstract import AttentionType
from vllm.logger import init_logger
from vllm.multimodal import MultiModalPlaceholderMap
from vllm.platforms import current_platform
from vllm.utils import async_tensor_h2d, make_tensor_with_pad
logger = init_logger(__name__)
@ -585,35 +583,3 @@ def get_num_prefill_decode_query_kv_tokens(
return (num_prefill_query_tokens, num_prefill_kv_tokens,
num_decode_query_tokens)
def get_flash_attn_version():
try:
from vllm.vllm_flash_attn.flash_attn_interface import (
fa_version_unsupported_reason, is_fa_version_supported)
# if hopper default to FA3, otherwise stick to FA2 for now
# TODO(lucas): profile FA3 on ampere to see if it makes sense to
# use FA3 as default for both
if current_platform.get_device_capability()[0] == 9:
fa_version = 3 if is_fa_version_supported(3) else 2
else:
fa_version = 2
if envs.VLLM_FLASH_ATTN_VERSION is not None:
assert envs.VLLM_FLASH_ATTN_VERSION in [2, 3]
fa_version = envs.VLLM_FLASH_ATTN_VERSION
if (current_platform.get_device_capability()[0] == 10
and envs.VLLM_FLASH_ATTN_VERSION == 3):
logger.warning("Cannot use FA version 3 on Blackwell platform",
"defaulting to FA version 2.")
fa_version = 2
if not is_fa_version_supported(fa_version):
logger.error("Cannot use FA version %d is not supported due to %s",
fa_version, fa_version_unsupported_reason(fa_version))
assert is_fa_version_supported(fa_version)
return fa_version
except (ImportError, AssertionError):
return None

View File

@ -84,6 +84,9 @@ class Attention(nn.Module):
self.calculate_kv_scales = calculate_kv_scales
self._k_scale = torch.tensor(1.0, dtype=torch.float32)
self._v_scale = torch.tensor(1.0, dtype=torch.float32)
# FlashAttn doesn't support quantizing the kv-cache only
# but requires q to be quantized as well.
self._q_scale = torch.tensor(1.0, dtype=torch.float32)
# We also keep the float32 versions of k/v_scale for attention
# backends that don't support tensors (Flashinfer)
@ -153,6 +156,7 @@ class Attention(nn.Module):
).parallel_config.pipeline_parallel_size)
]
self.q_range = torch.tensor(envs.Q_SCALE_CONSTANT, dtype=torch.float32)
self.k_range = torch.tensor(envs.K_SCALE_CONSTANT, dtype=torch.float32)
self.v_range = torch.tensor(envs.V_SCALE_CONSTANT, dtype=torch.float32)
@ -178,7 +182,7 @@ class Attention(nn.Module):
if self.calculate_kv_scales:
attn_metadata = get_forward_context().attn_metadata
if attn_metadata.enable_kv_scales_calculation:
self.calc_kv_scales(key, value)
self.calc_kv_scales(query, key, value)
if self.use_output:
output_shape = (output_shape
if output_shape is not None else query.shape)
@ -225,7 +229,8 @@ class Attention(nn.Module):
return torch.ops.vllm.unified_attention(
query, key, value, self.layer_name)
def calc_kv_scales(self, key, value):
def calc_kv_scales(self, query, key, value):
self._q_scale.copy_(torch.abs(query).max() / self.q_range)
self._k_scale.copy_(torch.abs(key).max() / self.k_range)
self._v_scale.copy_(torch.abs(value).max() / self.v_range)
self._k_scale_float = self._k_scale.item()

View File

@ -78,6 +78,7 @@ if TYPE_CHECKING:
VLLM_ENABLE_V1_MULTIPROCESSING: bool = True
VLLM_LOG_BATCHSIZE_INTERVAL: float = -1
VLLM_DISABLE_COMPILE_CACHE: bool = False
Q_SCALE_CONSTANT: int = 200
K_SCALE_CONSTANT: int = 200
V_SCALE_CONSTANT: int = 100
VLLM_SERVER_DEV_MODE: bool = False
@ -524,13 +525,17 @@ environment_variables: dict[str, Callable[[], Any]] = {
# Pad the fp8 weights to 256 bytes for ROCm
"VLLM_ROCM_FP8_PADDING":
lambda: bool(int(os.getenv("VLLM_ROCM_FP8_PADDING", "1"))),
# Divisor for dynamic query scale factor calculation for FP8 KV Cache
"Q_SCALE_CONSTANT":
lambda: int(os.getenv("Q_SCALE_CONSTANT", "200")),
# Divisor for dynamic key scale factor calculation for FP8 KV Cache
"K_SCALE_CONSTANT":
lambda: int(os.getenv("K_SCALE_CONSTANT", "200")),
# Divisor for dynamic value scale factor calculation for FP8 KV Cache
"V_SCALE_CONSTANT":
lambda: int(os.getenv("V_SCALE_CONSTANT", "100")),
# If set, enable multiprocessing in LLM for the V1 code path.
"VLLM_ENABLE_V1_MULTIPROCESSING":
lambda: bool(int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1"))),

42
vllm/fa_utils.py Normal file
View File

@ -0,0 +1,42 @@
# SPDX-License-Identifier: Apache-2.0
from typing import Optional
from vllm import envs
from vllm.logger import init_logger
logger = init_logger(__name__)
def get_flash_attn_version() -> Optional[int]:
# import here to avoid circular dependencies
from vllm.platforms import current_platform
try:
from vllm.vllm_flash_attn.flash_attn_interface import (
fa_version_unsupported_reason, is_fa_version_supported)
device_capability = current_platform.get_device_capability()
assert device_capability is not None
# 1. default version depending on platform
fa_version = 3 if (device_capability.major == 9
and is_fa_version_supported(3)) else 2
# 2. override if passed by environment
if envs.VLLM_FLASH_ATTN_VERSION is not None:
assert envs.VLLM_FLASH_ATTN_VERSION in [2, 3]
fa_version = envs.VLLM_FLASH_ATTN_VERSION
# 3. fallback for unsupported combinations
if device_capability.major == 10 and fa_version == 3:
logger.warning("Cannot use FA version 3 on Blackwell platform",
"defaulting to FA version 2.")
fa_version = 2
if not is_fa_version_supported(fa_version):
logger.error("Cannot use FA version %d is not supported due to %s",
fa_version, fa_version_unsupported_reason(fa_version))
assert is_fa_version_supported(fa_version)
return fa_version
except (ImportError, AssertionError):
return None

View File

@ -26,11 +26,14 @@ class BaseKVCacheMethod(QuantizeMethodBase):
def create_weights(self, layer: torch.nn.Module):
"""
Create "weight" (aka k_scale and v_scale) for an attention layer.
Create "weight" (aka q_scale, k_scale and v_scale)
for an attention layer.
"""
# Initialize the KV cache scales to -1.0, which is an invalid value.
# If the k/v_scale appears in the checkpoint, it will be
# Initialize the Q and KV cache scales to -1.0, an invalid value.
# If the q and k/v_scales appear in the checkpoint, it will be
# overwritten when loading weights.
layer.q_scale = torch.nn.Parameter(torch.tensor(-1.0),
requires_grad=False)
layer.k_scale = torch.nn.Parameter(torch.tensor(-1.0),
requires_grad=False)
layer.v_scale = torch.nn.Parameter(torch.tensor(-1.0),
@ -75,6 +78,13 @@ class BaseKVCacheMethod(QuantizeMethodBase):
raise ValueError("Only support per-tensor scaling factor "
"for fp8 KV cache")
if layer.q_scale < 0.0:
logger.warning_once(
"Checkpoint does not provide a q scaling factor. "
"Setting it to k_scale. This only matters for "
"the flash-attn backend.")
layer._q_scale.copy_(k_scale)
# These are used in the final Attention.forward()
layer._k_scale.copy_(k_scale)
layer._v_scale.copy_(v_scale)

View File

@ -14,6 +14,7 @@ from typing_extensions import ParamSpec
# import custom ops, trigger op registration
import vllm._C # noqa
import vllm.envs as envs
from vllm.fa_utils import get_flash_attn_version
from vllm.logger import init_logger
from vllm.utils import import_pynvml
@ -240,15 +241,6 @@ class CudaPlatformBase(Platform):
"Cannot use FlashAttention-2 backend for dtype other than "
"torch.float16 or torch.bfloat16.")
target_backend = _Backend.XFORMERS
elif kv_cache_dtype is not None and \
kv_cache_dtype.startswith("fp8"):
logger.info(
"Cannot use FlashAttention-2 backend for FP8 KV cache.")
logger.warning(
"Please use FlashInfer backend with FP8 KV Cache for "
"better performance by setting environment variable "
"VLLM_ATTENTION_BACKEND=FLASHINFER")
target_backend = _Backend.XFORMERS
elif block_size % 16 != 0:
logger.info(
"Cannot use FlashAttention-2 backend for block size not "
@ -270,6 +262,17 @@ class CudaPlatformBase(Platform):
"Cannot use FlashAttention-2 backend for head size %d.",
head_size)
target_backend = _Backend.XFORMERS
fp8_kv_cache = (kv_cache_dtype is not None
and kv_cache_dtype.startswith("fp8"))
if (fp8_kv_cache and get_flash_attn_version() != 3):
logger.info(
"Cannot use FlashAttention-2 backend for FP8 KV cache."
)
logger.warning(
"Please use FlashInfer backend with FP8 KV Cache for "
"better performance by setting environment variable "
"VLLM_ATTENTION_BACKEND=FLASHINFER")
target_backend = _Backend.XFORMERS
except ImportError:
logger.info(
"Cannot use FlashAttention-2 backend because the "

View File

@ -6,11 +6,12 @@ from typing import TYPE_CHECKING, Any, Optional
import numpy as np
import torch
from vllm import _custom_ops as ops
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionMetadata, AttentionType,
is_quantized_kv_cache)
from vllm.attention.backends.utils import get_flash_attn_version
from vllm.attention.ops.triton_merge_attn_states import merge_attn_states
from vllm.fa_utils import get_flash_attn_version
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import cdiv
@ -226,6 +227,9 @@ class FlashAttentionImpl(AttentionImpl):
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
NOTE: FP8 quantization, flash-attn expect the size of
{q,k,v}_descale to be (num_sequences, num_kv_heads).
We use torch's .expand() to avoid duplicating values
"""
assert output is not None, "Output tensor must be provided."
@ -259,6 +263,17 @@ class FlashAttentionImpl(AttentionImpl):
layer._k_scale,
layer._v_scale,
)
descale_shape = (attn_metadata.query_start_loc.shape[0] - 1,
key.shape[1])
if self.kv_cache_dtype.startswith("fp8"):
key_cache = key_cache.view(torch.float8_e4m3fn)
value_cache = value_cache.view(torch.float8_e4m3fn)
num_tokens, num_heads, head_size = query.shape
query, _ = ops.scaled_fp8_quant(
query.reshape(
(num_tokens, num_heads * head_size)).contiguous(),
layer._q_scale)
query = query.reshape((num_tokens, num_heads, head_size))
# Compute attention and update output up to `num_actual_tokens`.
if not attn_metadata.use_cascade:
@ -279,6 +294,9 @@ class FlashAttentionImpl(AttentionImpl):
block_table=attn_metadata.block_table,
softcap=self.logits_soft_cap,
fa_version=self.vllm_flash_attn_version,
q_descale=layer._q_scale.expand(descale_shape),
k_descale=layer._k_scale.expand(descale_shape),
v_descale=layer._v_scale.expand(descale_shape),
)
return output
@ -301,6 +319,9 @@ class FlashAttentionImpl(AttentionImpl):
block_table=attn_metadata.block_table,
common_prefix_len=attn_metadata.common_prefix_len,
fa_version=self.vllm_flash_attn_version,
q_descale=layer._q_scale,
k_descale=layer._k_scale,
v_descale=layer._v_scale,
)
return output
@ -391,6 +412,9 @@ def cascade_attention(
block_table: torch.Tensor,
common_prefix_len: int,
fa_version: int,
q_descale: Optional[torch.Tensor] = None,
k_descale: Optional[torch.Tensor] = None,
v_descale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
assert alibi_slopes is None, ("Cascade attention does not support ALiBi.")
# TODO: Support sliding window.
@ -402,6 +426,7 @@ def cascade_attention(
assert common_prefix_len % block_size == 0
num_common_kv_blocks = common_prefix_len // block_size
assert num_common_kv_blocks > 0
descale_shape = (cu_prefix_query_lens.shape[0] - 1, key_cache.shape[-2])
# Process shared prefix.
prefix_output, prefix_lse = flash_attn_varlen_func(
@ -419,8 +444,16 @@ def cascade_attention(
softcap=logits_soft_cap,
return_softmax_lse=True,
fa_version=fa_version,
q_descale=q_descale.expand(descale_shape)
if q_descale is not None else None,
k_descale=k_descale.expand(descale_shape)
if k_descale is not None else None,
v_descale=v_descale.expand(descale_shape)
if v_descale is not None else None,
)
descale_shape = (cu_query_lens.shape[0] - 1, key_cache.shape[-2])
# Process suffix per query.
suffix_output, suffix_lse = flash_attn_varlen_func(
q=query,
@ -437,6 +470,12 @@ def cascade_attention(
softcap=logits_soft_cap,
return_softmax_lse=True,
fa_version=fa_version,
q_descale=q_descale.expand(descale_shape)
if q_descale is not None else None,
k_descale=k_descale.expand(descale_shape)
if k_descale is not None else None,
v_descale=v_descale.expand(descale_shape)
if v_descale is not None else None,
)
# Merge prefix and suffix outputs, and store the result in output.

View File

@ -5,6 +5,7 @@ import pickle
import signal
import sys
import time
import traceback
import weakref
from dataclasses import dataclass
from enum import Enum, auto
@ -370,6 +371,9 @@ class WorkerProc:
func = partial(cloudpickle.loads(method), self.worker)
output = func(*args, **kwargs)
except Exception as e:
# Notes have been introduced in python 3.11
if hasattr(e, "add_note"):
e.add_note(traceback.format_exc())
self.worker_response_mq.enqueue(
(WorkerProc.ResponseStatus.FAILURE, e))
logger.exception("WorkerProc hit an exception: %s", exc_info=e)

View File

@ -1558,7 +1558,7 @@ class GPUModelRunner(LoRAModelRunnerMixin):
block_size=block_size,
num_kv_heads=attn_module.num_kv_heads,
head_size=attn_module.head_size,
dtype=attn_module.dtype,
dtype=self.kv_cache_dtype,
use_mla=use_mla)
elif attn_module.attn_type in (AttentionType.ENCODER,
AttentionType.ENCODER_ONLY):