[Model] Add mistral function calling format to all models loaded with "mistral" format (#8515)

Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
This commit is contained in:
Patrick von Platen 2024-09-17 19:50:37 +02:00 committed by GitHub
parent 9855b99502
commit a54ed80249
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 219 additions and 9 deletions

View File

@ -0,0 +1,138 @@
# ruff: noqa
import json
import random
import string
from vllm import LLM
from vllm.sampling_params import SamplingParams
# This script is an offline demo for function calling
#
# If you want to run a server/client setup, please follow this code:
#
# - Server:
#
# ```bash
# vllm serve mistralai/Mistral-7B-Instruct-v0.3 --tokenizer-mode mistral --load-format mistral --config-format mistral
# ```
#
# - Client:
#
# ```bash
# curl --location 'http://<your-node-url>:8000/v1/chat/completions' \
# --header 'Content-Type: application/json' \
# --header 'Authorization: Bearer token' \
# --data '{
# "model": "mistralai/Mistral-7B-Instruct-v0.3"
# "messages": [
# {
# "role": "user",
# "content": [
# {"type" : "text", "text": "Describe this image in detail please."},
# {"type": "image_url", "image_url": {"url": "https://s3.amazonaws.com/cms.ipressroom.com/338/files/201808/5b894ee1a138352221103195_A680%7Ejogging-edit/A680%7Ejogging-edit_hero.jpg"}},
# {"type" : "text", "text": "and this one as well. Answer in French."},
# {"type": "image_url", "image_url": {"url": "https://www.wolframcloud.com/obj/resourcesystem/images/a0e/a0ee3983-46c6-4c92-b85d-059044639928/6af8cfb971db031b.png"}}
# ]
# }
# ]
# }'
# ```
#
# Usage:
# python demo.py simple
# python demo.py advanced
model_name = "mistralai/Mistral-7B-Instruct-v0.3"
# or switch to "mistralai/Mistral-Nemo-Instruct-2407"
# or "mistralai/Mistral-Large-Instruct-2407"
# or any other mistral model with function calling ability
sampling_params = SamplingParams(max_tokens=8192, temperature=0.0)
llm = LLM(model=model_name,
tokenizer_mode="mistral",
config_format="mistral",
load_format="mistral")
def generate_random_id(length=9):
characters = string.ascii_letters + string.digits
random_id = ''.join(random.choice(characters) for _ in range(length))
return random_id
# simulate an API that can be called
def get_current_weather(city: str, state: str, unit: 'str'):
return (f"The weather in {city}, {state} is 85 degrees {unit}. It is "
"partly cloudly, with highs in the 90's.")
tool_funtions = {"get_current_weather": get_current_weather}
tools = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for, e.g. 'San Francisco'"
},
"state": {
"type":
"string",
"description":
"the two-letter abbreviation for the state that the city is"
" in, e.g. 'CA' which would mean 'California'"
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["city", "state", "unit"]
}
}
}]
messages = [{
"role":
"user",
"content":
"Can you tell me what the temperate will be in Dallas, in fahrenheit?"
}]
outputs = llm.chat(messages, sampling_params=sampling_params, tools=tools)
output = outputs[0].outputs[0].text.strip()
# append the assistant message
messages.append({
"role": "assistant",
"content": output,
})
# let's now actually parse and execute the model's output simulating an API call by using the
# above defined function
tool_calls = json.loads(output)
tool_answers = [
tool_funtions[call['name']](**call['arguments']) for call in tool_calls
]
# append the answer as a tool message and let the LLM give you an answer
messages.append({
"role": "tool",
"content": "\n\n".join(tool_answers),
"tool_call_id": generate_random_id(),
})
outputs = llm.chat(messages, sampling_params, tools=tools)
print(outputs[0].outputs[0].text.strip())
# yields
# 'The weather in Dallas, TX is 85 degrees fahrenheit. '
# 'It is partly cloudly, with highs in the 90's.'

View File

@ -4,13 +4,61 @@ Run `pytest tests/models/test_mistral.py`.
"""
import pytest
from vllm import SamplingParams
from ...utils import check_logprobs_close
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
# Mistral-Nemo is to big for CI, but passes locally
# "mistralai/Mistral-Nemo-Instruct-2407"
]
SAMPLING_PARAMS = SamplingParams(max_tokens=512, temperature=0.0, logprobs=5)
# for function calling
TOOLS = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for, e.g. 'San Francisco'"
},
"state": {
"type":
"string",
"description":
"the two-letter abbreviation for the state that the city is"
" in, e.g. 'CA' which would mean 'California'"
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["city", "state", "unit"]
}
}
}]
MSGS = [{
"role":
"user",
"content": ("Can you tell me what the temperate"
" will be in Dallas, in fahrenheit?")
}]
EXPECTED_FUNC_CALL = (
'[{"name": "get_current_weather", "arguments": '
'{"city": "Dallas", "state": "TX", "unit": "fahrenheit"}}]')
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@ -81,3 +129,22 @@ def test_mistral_format(
name_0="hf",
name_1="mistral",
)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("model", MODELS[1:]) # v1 can't do func calling
def test_mistral_function_calling(
vllm_runner,
model: str,
dtype: str,
) -> None:
with vllm_runner(model,
dtype=dtype,
tokenizer_mode="mistral",
config_format="mistral",
load_format="mistral") as vllm_model:
outputs = vllm_model.model.chat(MSGS,
tools=TOOLS,
sampling_params=SAMPLING_PARAMS)
assert outputs[0].outputs[0].text.strip() == EXPECTED_FUNC_CALL

View File

@ -1,5 +1,6 @@
from contextlib import contextmanager
from typing import ClassVar, List, Optional, Sequence, Union, cast, overload
from typing import (Any, ClassVar, Dict, List, Optional, Sequence, Union, cast,
overload)
from tqdm import tqdm
@ -357,6 +358,7 @@ class LLM:
lora_request: Optional[LoRARequest] = None,
chat_template: Optional[str] = None,
add_generation_prompt: bool = True,
tools: Optional[List[Dict[str, Any]]] = None,
) -> List[RequestOutput]:
"""
Generate responses for a chat conversation.
@ -401,6 +403,7 @@ class LLM:
messages=messages,
chat_template=chat_template,
add_generation_prompt=add_generation_prompt,
tools=tools,
)
else:
prompt = apply_hf_chat_template(
@ -408,6 +411,7 @@ class LLM:
conversation=conversation,
chat_template=chat_template,
add_generation_prompt=add_generation_prompt,
tools=tools,
)
inputs: PromptInputs

View File

@ -123,7 +123,8 @@ class OpenAIServingChat(OpenAIServing):
]
prompt: Union[str, List[int]]
if isinstance(tokenizer, MistralTokenizer):
is_mistral_tokenizer = isinstance(tokenizer, MistralTokenizer)
if is_mistral_tokenizer:
prompt = apply_mistral_chat_template(
tokenizer,
messages=request.messages,
@ -159,10 +160,10 @@ class OpenAIServingChat(OpenAIServing):
return self.create_error_response(
"tool_choice = \"required\" is not supported!")
# "auto" tools requires --enable-auto-tool-choice
# and --tool-call-parser
if request.tool_choice == "auto" and not (
if not is_mistral_tokenizer and request.tool_choice == "auto" and not (
self.enable_auto_tools and self.tool_parser is not None):
# for hf tokenizers, "auto" tools requires
# --enable-auto-tool-choice and --tool-call-parser
return self.create_error_response(
"\"auto\" tool choice requires "
"--enable-auto-tool-choice and --tool-call-parser to be set")

View File

@ -165,10 +165,9 @@ class MistralTokenizer:
messages: List["ChatCompletionMessageParam"],
tools: Optional[Dict[str, Any]] = None,
**kwargs) -> List[int]:
assert tools is None, "`tools` are not yet supported."
request = ChatCompletionRequest(
messages=messages) # type: ignore[type-var]
request = ChatCompletionRequest(messages=messages,
tools=tools) # type: ignore[type-var]
encoded = self.mistral.encode_chat_completion(request)
# encode-decode to get clean prompt
@ -176,7 +175,8 @@ class MistralTokenizer:
def convert_tokens_to_string(self, tokens: List[str]) -> str:
if isinstance(self.tokenizer, Tekkenizer):
return "".join(tokens)
return "".join(t for t in tokens
if t not in self.tokenizer._all_special_tokens)
else:
return self.tokenizer.decode(tokens) # type: ignore[arg-type]