Add logo and polish readme (#156)
183
.gitignore
vendored
@ -1,15 +1,172 @@
|
||||
**/*.pyc
|
||||
**/__pycache__/
|
||||
*.egg-info/
|
||||
*.eggs/
|
||||
*.so
|
||||
*.log
|
||||
*.csv
|
||||
build/
|
||||
docs/build/
|
||||
dist/
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
*.pkl
|
||||
*.png
|
||||
**/log.txt
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/#use-with-ide
|
||||
.pdm.toml
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
.idea/
|
||||
|
||||
# VSCode
|
||||
.vscode/
|
||||
|
||||
# DS Store
|
||||
.DS_Store
|
||||
|
||||
# Results
|
||||
*.csv
|
||||
|
||||
# Python pickle files
|
||||
*.pkl
|
||||
|
82
README.md
@ -1,50 +1,84 @@
|
||||
# vLLM: Easy, Fast, and Cheap LLM Serving for Everyone
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="./docs/source/assets/logos/vllm-logo-text-dark.png">
|
||||
<img alt="vLLM" src="./docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
|
||||
</picture>
|
||||
</p>
|
||||
|
||||
| [**Documentation**](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/) | [**Blog**]() |
|
||||
<h3 align="center">
|
||||
Easy, fast, and cheap LLM serving for everyone
|
||||
</h3>
|
||||
|
||||
vLLM is a fast and easy-to-use library for LLM inference and serving.
|
||||
<p align="center">
|
||||
| <a href="https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/"><b>Documentation</b></a> | <a href=""><b>Blog</b></a> |
|
||||
|
||||
## Latest News 🔥
|
||||
</p>
|
||||
|
||||
---
|
||||
|
||||
*Latest News* 🔥
|
||||
|
||||
- [2023/06] We officially released vLLM! vLLM has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid April. Check out our [blog post]().
|
||||
|
||||
---
|
||||
|
||||
vLLM is a fast and easy to use library for LLM inference and serving.
|
||||
|
||||
vLLM is fast with:
|
||||
|
||||
- State-of-the-art serving throughput
|
||||
- Efficient management of attention key and value memory with **PagedAttention**
|
||||
- Dynamic batching of incoming requests
|
||||
- Optimized CUDA kernels
|
||||
|
||||
vLLM is flexible and easy to use with:
|
||||
|
||||
- Seamless integration with popular HuggingFace models
|
||||
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
|
||||
- Tensor parallelism support for distributed inference
|
||||
- Streaming outputs
|
||||
- OpenAI-compatible API server
|
||||
|
||||
Install vLLM with pip or [from source](https://llm-serving-cacheflow.readthedocs-hosted.com/en/latest/getting_started/installation.html#build-from-source):
|
||||
|
||||
```bash
|
||||
pip install vllm
|
||||
```
|
||||
|
||||
## Getting Started
|
||||
|
||||
Visit our [documentation](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/) to get started.
|
||||
- [Installation](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/getting_started/installation.html): `pip install vllm`
|
||||
- [Installation](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/getting_started/installation.html)
|
||||
- [Quickstart](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/getting_started/quickstart.html)
|
||||
- [Supported Models](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/models/supported_models.html)
|
||||
|
||||
## Key Features
|
||||
|
||||
vLLM comes with many powerful features that include:
|
||||
|
||||
- State-of-the-art performance in serving throughput
|
||||
- Efficient management of attention key and value memory with **PagedAttention**
|
||||
- Seamless integration with popular HuggingFace models
|
||||
- Dynamic batching of incoming requests
|
||||
- Optimized CUDA kernels
|
||||
- High-throughput serving with various decoding algorithms, including *parallel sampling* and *beam search*
|
||||
- Tensor parallelism support for distributed inference
|
||||
- Streaming outputs
|
||||
- OpenAI-compatible API server
|
||||
|
||||
## Performance
|
||||
|
||||
vLLM outperforms HuggingFace Transformers (HF) by up to 24x and Text Generation Inference (TGI) by up to 3.5x, in terms of throughput.
|
||||
For details, check out our [blog post]().
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/figures/perf_a10g_n1.png" width="45%">
|
||||
<img src="./assets/figures/perf_a100_n1.png" width="45%">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="./docs/source/assets/figures/perf_a10g_n1_dark.png">
|
||||
<img src="./docs/source/assets/figures/perf_a10g_n1_light.png" width="45%">
|
||||
</picture>
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="./docs/source/assets/figures/perf_a100_n1_dark.png">
|
||||
<img src="./docs/source/assets/figures/perf_a100_n1_light.png" width="45%">
|
||||
</picture>
|
||||
<br>
|
||||
<em> Serving throughput when each request asks for 1 output completion. </em>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/figures/perf_a10g_n3.png" width="45%">
|
||||
<img src="./assets/figures/perf_a100_n3.png" width="45%">
|
||||
<br>
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="./docs/source/assets/figures/perf_a10g_n3_dark.png">
|
||||
<img src="./docs/source/assets/figures/perf_a10g_n3_light.png" width="45%">
|
||||
</picture>
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="./docs/source/assets/figures/perf_a100_n3_dark.png">
|
||||
<img src="./docs/source/assets/figures/perf_a100_n3_light.png" width="45%">
|
||||
</picture> <br>
|
||||
<em> Serving throughput when each request asks for 3 output completions. </em>
|
||||
</p>
|
||||
|
||||
|
Before Width: | Height: | Size: 267 KiB After Width: | Height: | Size: 267 KiB |
Before Width: | Height: | Size: 285 KiB After Width: | Height: | Size: 285 KiB |
Before Width: | Height: | Size: 259 KiB After Width: | Height: | Size: 259 KiB |
Before Width: | Height: | Size: 276 KiB After Width: | Height: | Size: 276 KiB |
Before Width: | Height: | Size: 244 KiB After Width: | Height: | Size: 244 KiB |
Before Width: | Height: | Size: 260 KiB After Width: | Height: | Size: 260 KiB |
Before Width: | Height: | Size: 255 KiB After Width: | Height: | Size: 255 KiB |
Before Width: | Height: | Size: 272 KiB After Width: | Height: | Size: 272 KiB |
BIN
docs/source/assets/logos/vllm-logo-only-light.png
Normal file
After Width: | Height: | Size: 53 KiB |
BIN
docs/source/assets/logos/vllm-logo-text-dark.png
Normal file
After Width: | Height: | Size: 86 KiB |
BIN
docs/source/assets/logos/vllm-logo-text-light.png
Normal file
After Width: | Height: | Size: 88 KiB |
@ -1,18 +1,43 @@
|
||||
Welcome to vLLM!
|
||||
================
|
||||
|
||||
**vLLM** is a fast and easy-to-use library for LLM inference and serving.
|
||||
Its core features include:
|
||||
.. figure:: ./assets/logos/vllm-logo-text-light.png
|
||||
:width: 60%
|
||||
:align: center
|
||||
:alt: vLLM
|
||||
:class: no-scaled-link
|
||||
|
||||
- State-of-the-art performance in serving throughput
|
||||
- Efficient management of attention key and value memory with **PagedAttention**
|
||||
- Seamless integration with popular HuggingFace models
|
||||
- Dynamic batching of incoming requests
|
||||
- Optimized CUDA kernels
|
||||
- High-throughput serving with various decoding algorithms, including *parallel sampling* and *beam search*
|
||||
- Tensor parallelism support for distributed inference
|
||||
- Streaming outputs
|
||||
- OpenAI-compatible API server
|
||||
.. raw:: html
|
||||
|
||||
<p style="text-align:center">
|
||||
<strong>Easy, fast, and cheap LLM serving for everyone
|
||||
</strong>
|
||||
</p>
|
||||
|
||||
<p style="text-align:center">
|
||||
<a class="github-button" href="https://github.com/WoosukKwon/vllm" data-show-count="true" data-size="large" aria-label="Star skypilot-org/skypilot on GitHub">Star</a>
|
||||
<a class="github-button" href="https://github.com/WoosukKwon/vllm/subscription" data-icon="octicon-eye" data-size="large" aria-label="Watch skypilot-org/skypilot on GitHub">Watch</a>
|
||||
<a class="github-button" href="https://github.com/WoosukKwon/vllm/fork" data-icon="octicon-repo-forked" data-size="large" aria-label="Fork skypilot-org/skypilot on GitHub">Fork</a>
|
||||
</p>
|
||||
|
||||
|
||||
|
||||
vLLM is a fast and easy to use library for LLM inference and serving.
|
||||
|
||||
vLLM is fast with:
|
||||
|
||||
* State-of-the-art serving throughput
|
||||
* Efficient management of attention key and value memory with **PagedAttention**
|
||||
* Dynamic batching of incoming requests
|
||||
* Optimized CUDA kernels
|
||||
|
||||
vLLM is flexible and easy to use with:
|
||||
|
||||
* Seamless integration with popular HuggingFace models
|
||||
* High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
|
||||
* Tensor parallelism support for distributed inference
|
||||
* Streaming outputs
|
||||
* OpenAI-compatible API server
|
||||
|
||||
For more information, please refer to our `blog post <>`_.
|
||||
|
||||
|