Add logo and polish readme (#156)

This commit is contained in:
Zhuohan Li 2023-06-19 16:31:13 +08:00 committed by GitHub
parent 5822ede66e
commit a255885f83
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 264 additions and 48 deletions

183
.gitignore vendored
View File

@ -1,15 +1,172 @@
**/*.pyc
**/__pycache__/
*.egg-info/
*.eggs/
*.so
*.log
*.csv
build/
docs/build/
dist/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
*.pkl
*.png
**/log.txt
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/
# VSCode
.vscode/
# DS Store
.DS_Store
# Results
*.csv
# Python pickle files
*.pkl

View File

@ -1,50 +1,84 @@
# vLLM: Easy, Fast, and Cheap LLM Serving for Everyone
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="./docs/source/assets/logos/vllm-logo-text-dark.png">
<img alt="vLLM" src="./docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
</picture>
</p>
| [**Documentation**](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/) | [**Blog**]() |
<h3 align="center">
Easy, fast, and cheap LLM serving for everyone
</h3>
vLLM is a fast and easy-to-use library for LLM inference and serving.
<p align="center">
| <a href="https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/"><b>Documentation</b></a> | <a href=""><b>Blog</b></a> |
## Latest News 🔥
</p>
---
*Latest News* 🔥
- [2023/06] We officially released vLLM! vLLM has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid April. Check out our [blog post]().
---
vLLM is a fast and easy to use library for LLM inference and serving.
vLLM is fast with:
- State-of-the-art serving throughput
- Efficient management of attention key and value memory with **PagedAttention**
- Dynamic batching of incoming requests
- Optimized CUDA kernels
vLLM is flexible and easy to use with:
- Seamless integration with popular HuggingFace models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
Install vLLM with pip or [from source](https://llm-serving-cacheflow.readthedocs-hosted.com/en/latest/getting_started/installation.html#build-from-source):
```bash
pip install vllm
```
## Getting Started
Visit our [documentation](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/) to get started.
- [Installation](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/getting_started/installation.html): `pip install vllm`
- [Installation](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/getting_started/installation.html)
- [Quickstart](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/getting_started/quickstart.html)
- [Supported Models](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/models/supported_models.html)
## Key Features
vLLM comes with many powerful features that include:
- State-of-the-art performance in serving throughput
- Efficient management of attention key and value memory with **PagedAttention**
- Seamless integration with popular HuggingFace models
- Dynamic batching of incoming requests
- Optimized CUDA kernels
- High-throughput serving with various decoding algorithms, including *parallel sampling* and *beam search*
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
## Performance
vLLM outperforms HuggingFace Transformers (HF) by up to 24x and Text Generation Inference (TGI) by up to 3.5x, in terms of throughput.
For details, check out our [blog post]().
<p align="center">
<img src="./assets/figures/perf_a10g_n1.png" width="45%">
<img src="./assets/figures/perf_a100_n1.png" width="45%">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="./docs/source/assets/figures/perf_a10g_n1_dark.png">
<img src="./docs/source/assets/figures/perf_a10g_n1_light.png" width="45%">
</picture>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="./docs/source/assets/figures/perf_a100_n1_dark.png">
<img src="./docs/source/assets/figures/perf_a100_n1_light.png" width="45%">
</picture>
<br>
<em> Serving throughput when each request asks for 1 output completion. </em>
</p>
<p align="center">
<img src="./assets/figures/perf_a10g_n3.png" width="45%">
<img src="./assets/figures/perf_a100_n3.png" width="45%">
<br>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="./docs/source/assets/figures/perf_a10g_n3_dark.png">
<img src="./docs/source/assets/figures/perf_a10g_n3_light.png" width="45%">
</picture>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="./docs/source/assets/figures/perf_a100_n3_dark.png">
<img src="./docs/source/assets/figures/perf_a100_n3_light.png" width="45%">
</picture> <br>
<em> Serving throughput when each request asks for 3 output completions. </em>
</p>

View File

Before

Width:  |  Height:  |  Size: 267 KiB

After

Width:  |  Height:  |  Size: 267 KiB

View File

Before

Width:  |  Height:  |  Size: 285 KiB

After

Width:  |  Height:  |  Size: 285 KiB

View File

Before

Width:  |  Height:  |  Size: 259 KiB

After

Width:  |  Height:  |  Size: 259 KiB

View File

Before

Width:  |  Height:  |  Size: 276 KiB

After

Width:  |  Height:  |  Size: 276 KiB

View File

Before

Width:  |  Height:  |  Size: 244 KiB

After

Width:  |  Height:  |  Size: 244 KiB

View File

Before

Width:  |  Height:  |  Size: 260 KiB

After

Width:  |  Height:  |  Size: 260 KiB

View File

Before

Width:  |  Height:  |  Size: 255 KiB

After

Width:  |  Height:  |  Size: 255 KiB

View File

Before

Width:  |  Height:  |  Size: 272 KiB

After

Width:  |  Height:  |  Size: 272 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

View File

@ -1,18 +1,43 @@
Welcome to vLLM!
================
**vLLM** is a fast and easy-to-use library for LLM inference and serving.
Its core features include:
.. figure:: ./assets/logos/vllm-logo-text-light.png
:width: 60%
:align: center
:alt: vLLM
:class: no-scaled-link
- State-of-the-art performance in serving throughput
- Efficient management of attention key and value memory with **PagedAttention**
- Seamless integration with popular HuggingFace models
- Dynamic batching of incoming requests
- Optimized CUDA kernels
- High-throughput serving with various decoding algorithms, including *parallel sampling* and *beam search*
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
.. raw:: html
<p style="text-align:center">
<strong>Easy, fast, and cheap LLM serving for everyone
</strong>
</p>
<p style="text-align:center">
<a class="github-button" href="https://github.com/WoosukKwon/vllm" data-show-count="true" data-size="large" aria-label="Star skypilot-org/skypilot on GitHub">Star</a>
<a class="github-button" href="https://github.com/WoosukKwon/vllm/subscription" data-icon="octicon-eye" data-size="large" aria-label="Watch skypilot-org/skypilot on GitHub">Watch</a>
<a class="github-button" href="https://github.com/WoosukKwon/vllm/fork" data-icon="octicon-repo-forked" data-size="large" aria-label="Fork skypilot-org/skypilot on GitHub">Fork</a>
</p>
vLLM is a fast and easy to use library for LLM inference and serving.
vLLM is fast with:
* State-of-the-art serving throughput
* Efficient management of attention key and value memory with **PagedAttention**
* Dynamic batching of incoming requests
* Optimized CUDA kernels
vLLM is flexible and easy to use with:
* Seamless integration with popular HuggingFace models
* High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
* Tensor parallelism support for distributed inference
* Streaming outputs
* OpenAI-compatible API server
For more information, please refer to our `blog post <>`_.