[Frontend] Add Phi-4-mini function calling support (#14886)

Signed-off-by: Kinfey <kinfeylo@microsoft.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
This commit is contained in:
Kinfey 2025-04-01 13:50:05 +08:00 committed by GitHub
parent a76f547e11
commit a164aea35d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 170 additions and 1 deletions

View File

@ -0,0 +1,60 @@
{%- if messages %}
{%- if system_message or tools %}
<|system|>
{%- if system_message %}
{{ system_message }}
{%- endif %}
In addition to plain text responses, you can chose to call one or more of the provided functions.
Use the following rule to decide when to call a function:
* if the response can be generated from your internal knowledge (e.g., as in the case of queries like "What is the capital of Poland?"), do so
* if you need external information that can be obtained by calling one or more of the provided functions, generate a function calls
If you decide to call functions:
* prefix function calls with functools marker (no closing marker required)
* all function calls should be generated in a single JSON list formatted as functools[{"name": [function name], "arguments": [function arguments as JSON]}, ...]
* follow the provided JSON schema. Do not hallucinate arguments or values. Do to blindly copy values from the provided samples
* respect the argument type formatting. E.g., if the type if number and format is float, write value 7 as 7.0
* make sure you pick the right functions that match the user intent
{%- if tools %}
{%- for t in tools %}
{{- t | tojson(indent=4) }}
{{- "\n\n" }}
{%- endfor %}
{%- endif %}<|end|>
{%- endif %}
{%- for message in messages %}
{%- if message.role != "system" %}
<|{{ message.role }}|>
{%- if message.content and message.role == "tools" %}
{"result": {{ message.content }}}
{%- elif message.content %}
{{ message.content }}
{%- elif message.tool_calls %}
{%- for call in message.tool_calls %}
{"name": "{{ call.function.name }}", "arguments": {{ call.function.arguments }}}
{%- if not loop.last %},{% endif %}
{%- endfor %}
{%- endif %}<|end|>
{%- endif %}
{%- endfor %}<|assistant|>
{%- else %}
{%- if system_message %}
<|system|>
{{ system_message }}<|end|>
{%- endif %}
{%- if prompt %}
<|user|>
{{ prompt }}<|end|>
{%- endif %}<|assistant|>
{%- endif %}
{{ response }}
{%- if response %}<|user|>{% endif %}

View File

@ -8,11 +8,12 @@ from .internlm2_tool_parser import Internlm2ToolParser
from .jamba_tool_parser import JambaToolParser from .jamba_tool_parser import JambaToolParser
from .llama_tool_parser import Llama3JsonToolParser from .llama_tool_parser import Llama3JsonToolParser
from .mistral_tool_parser import MistralToolParser from .mistral_tool_parser import MistralToolParser
from .phi4mini_tool_parser import Phi4MiniJsonToolParser
from .pythonic_tool_parser import PythonicToolParser from .pythonic_tool_parser import PythonicToolParser
__all__ = [ __all__ = [
"ToolParser", "ToolParserManager", "Granite20bFCToolParser", "ToolParser", "ToolParserManager", "Granite20bFCToolParser",
"GraniteToolParser", "Hermes2ProToolParser", "MistralToolParser", "GraniteToolParser", "Hermes2ProToolParser", "MistralToolParser",
"Internlm2ToolParser", "Llama3JsonToolParser", "JambaToolParser", "Internlm2ToolParser", "Llama3JsonToolParser", "JambaToolParser",
"PythonicToolParser" "PythonicToolParser", "Phi4MiniJsonToolParser"
] ]

View File

@ -0,0 +1,108 @@
# SPDX-License-Identifier: Apache-2.0
import json
import re
from collections.abc import Sequence
from typing import Any, Optional
from transformers import PreTrainedTokenizerBase
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
DeltaMessage,
ExtractedToolCallInformation,
FunctionCall, ToolCall)
from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import (
ToolParser, ToolParserManager)
from vllm.logger import init_logger
from vllm.utils import random_uuid
logger = init_logger(__name__)
@ToolParserManager.register_module("phi4_mini_json")
class Phi4MiniJsonToolParser(ToolParser):
"""
Tool call parser for phi-4-mini models intended for use with the
examples/tool_chat_template_llama.jinja template.
Used when --enable-auto-tool-choice --tool-call-parser phi4_mini_json
are all set
"""
def __init__(self, tokenizer: PreTrainedTokenizerBase) -> None:
super().__init__(tokenizer)
# initialize properties used for state when parsing tool calls in
# streaming mode
self.prev_tool_call_arr: list[dict[str, Any]] = []
self.current_tool_id: int = -1
self.current_tool_name_sent: bool = False
self.streamed_args_for_tool: list[str] = [
] # map what has been streamed for each tool so far to a list
self.bot_token: str = "functools"
def extract_tool_calls(
self, model_output: str,
request: ChatCompletionRequest) -> ExtractedToolCallInformation:
"""
Extract the tool calls from a complete model response.
"""
print(f"Model output: {model_output}")
pattern = r'functools\[(.*?)\]'
matches = re.search(pattern, model_output, re.DOTALL)
if not matches:
print("No function calls found")
return ExtractedToolCallInformation(tools_called=False,
tool_calls=[],
content=model_output)
try:
function_call_arr: list[dict[str, Any]] = []
try:
json_content = '[' + matches.group(1) + ']'
function_call_arr = json.loads(json_content)
print(f"Successfully extracted {len(function_call_arr)} "
"function calls")
except json.JSONDecodeError as e:
print(f"Error parsing JSON: {e}")
tool_calls: list[ToolCall] = [
ToolCall(
id=f"chatcmpl-tool-{random_uuid()}",
type="function",
function=FunctionCall(
name=raw_function_call["name"],
# function call args are JSON but as a string
arguments=json.dumps(
raw_function_call["arguments"] if "arguments" in
raw_function_call else
raw_function_call["parameters"])))
for raw_function_call in function_call_arr
]
# get any content before the tool call
ret = ExtractedToolCallInformation(tools_called=True,
tool_calls=tool_calls,
content=None)
return ret
except Exception:
return ExtractedToolCallInformation(tools_called=False,
tool_calls=[],
content=model_output)
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> Optional[DeltaMessage]:
return None