[V1] guidance backend for structured output + auto fallback mode (#14779)

Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Loc Huynh <jc1da.3011@gmail.com>
Co-authored-by: Michal Moskal <michal@moskal.me>
This commit is contained in:
Russell Bryant 2025-03-25 00:02:33 -04:00 committed by GitHub
parent 10b34e36b9
commit a09ad90a72
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 344 additions and 110 deletions

View File

@ -18,7 +18,7 @@ pillow # Required for image processing
prometheus-fastapi-instrumentator >= 7.0.0
tiktoken >= 0.6.0 # Required for DBRX tokenizer
lm-format-enforcer >= 0.10.11, < 0.11
llguidance >= 0.7.2, < 0.8.0; platform_machine == "x86_64" or platform_machine == "arm64" or platform_machine == "aarch64"
llguidance >= 0.7.9, < 0.8.0; platform_machine == "x86_64" or platform_machine == "arm64" or platform_machine == "aarch64"
outlines == 0.1.11
lark == 1.2.2
xgrammar == 0.1.16; platform_machine == "x86_64" or platform_machine == "aarch64"

View File

@ -13,7 +13,7 @@ from vllm.entrypoints.llm import LLM
from vllm.outputs import RequestOutput
from vllm.sampling_params import GuidedDecodingParams, SamplingParams
GUIDED_DECODING_BACKENDS_V1 = ["xgrammar"]
GUIDED_DECODING_BACKENDS_V1 = ["xgrammar", "guidance"]
MODELS_TO_TEST = [
"Qwen/Qwen2.5-1.5B-Instruct", "mistralai/Ministral-8B-Instruct-2410"
]
@ -30,12 +30,13 @@ def test_guided_json_completion(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
json=sample_json_schema,
backend=guided_decoding_backend))
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(json=sample_json_schema))
outputs = llm.generate(prompts=[
f"Give an example JSON for an employee profile "
f"that fits this schema: {sample_json_schema}"
@ -111,13 +112,14 @@ def test_guided_json_object(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=1.0,
max_tokens=100,
n=2,
guided_decoding=GuidedDecodingParams(
json_object=True,
backend=guided_decoding_backend))
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=100,
n=2,
guided_decoding=GuidedDecodingParams(json_object=True))
outputs = llm.generate(
prompts=("Generate a JSON object with curly braces for a person with "
@ -137,12 +139,20 @@ def test_guided_json_object(
# Parse to verify it is valid JSON
parsed_json = json.loads(generated_text)
assert isinstance(parsed_json, dict)
allowed_types: tuple[type, ...] = (dict, )
if guided_decoding_backend == "xgrammar":
# TODO - we are currently too permissive with xgrammar and
# allow # any valid json (typically comes back as a list or
# object). We can fix this by specifying a jsonschema of
# {"type": "object"}, # but we need this fix in a release
# first: https://github.com/mlc-ai/xgrammar/pull/264
allowed_types = (dict, list)
assert isinstance(parsed_json, allowed_types)
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize("guided_decoding_backend",
GUIDED_DECODING_BACKENDS_V1)
GUIDED_DECODING_BACKENDS_V1 + ["auto"])
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
def test_guided_json_unsupported_schema(
monkeypatch: pytest.MonkeyPatch,
@ -151,21 +161,43 @@ def test_guided_json_unsupported_schema(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
json=unsupported_json_schema,
backend=guided_decoding_backend))
with pytest.raises(ValueError,
match="The provided JSON schema contains features "
"not supported by xgrammar."):
llm.generate(prompts=[
f"Give an example JSON for an employee profile "
f"that fits this schema: {unsupported_json_schema}"
] * 2,
sampling_params=sampling_params,
use_tqdm=True)
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(json=unsupported_json_schema))
if guided_decoding_backend == "xgrammar":
with pytest.raises(ValueError,
match="The provided JSON schema contains features "
"not supported by xgrammar."):
llm.generate(prompts=[
f"Give an example JSON for an employee profile "
f"that fits this schema: {unsupported_json_schema}"
] * 2,
sampling_params=sampling_params,
use_tqdm=True)
else:
# This should work for both "guidance" and "auto".
outputs = llm.generate(
prompts=("Give an example JSON object for a grade "
"that fits this schema: "
f"{unsupported_json_schema}"),
sampling_params=sampling_params,
use_tqdm=True)
assert outputs is not None
for output in outputs:
assert output is not None
assert isinstance(output, RequestOutput)
generated_text = output.outputs[0].text
assert generated_text is not None
print(generated_text)
# Parse to verify it is valid JSON
parsed_json = json.loads(generated_text)
assert isinstance(parsed_json, dict)
@pytest.mark.skip_global_cleanup
@ -179,13 +211,14 @@ def test_guided_grammar_ebnf(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
grammar=sample_sql_ebnf,
backend=guided_decoding_backend))
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(grammar=sample_sql_ebnf))
outputs = llm.generate(
prompts=("Generate a sql statement that selects col_1 from "
"table_1 where it is equal to 1"),
@ -222,13 +255,14 @@ def test_guided_grammar_lark(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
grammar=sample_sql_lark,
backend=guided_decoding_backend))
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(grammar=sample_sql_lark))
outputs = llm.generate(
prompts=("Generate a sql statement that selects col_1 from "
"table_1 where it is equal to 1"),
@ -269,16 +303,15 @@ def test_guided_grammar_ebnf_invalid(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
grammar="not a grammar",
backend=guided_decoding_backend))
with pytest.raises(ValueError,
match="Failed to convert the grammar "
"from Lark to EBNF."):
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(grammar="not a grammar"))
with pytest.raises(ValueError, match="Failed to convert the grammar "):
llm.generate(
prompts=("Generate a sql statement that selects col_1 from "
"table_1 where it is equal to 1"),
@ -298,12 +331,13 @@ def test_guided_regex(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(
regex=sample_regex,
backend=guided_decoding_backend))
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(regex=sample_regex))
outputs = llm.generate(
prompts=[
f"Give an example IPv4 address with this regex: {sample_regex}"
@ -335,12 +369,13 @@ def test_guided_choice_completion(
model_name: str,
):
monkeypatch.setenv("VLLM_USE_V1", "1")
llm = LLM(model=model_name, max_model_len=1024)
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(
choice=sample_guided_choice,
backend=guided_decoding_backend))
llm = LLM(model=model_name,
max_model_len=1024,
guided_decoding_backend=guided_decoding_backend)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(choice=sample_guided_choice))
outputs = llm.generate(
prompts="The best language for type-safe systems programming is ",
sampling_params=sampling_params,

View File

@ -2800,12 +2800,17 @@ class DecodingConfig:
return hash_str
def __post_init__(self):
valid_guided_backends = [
'outlines', 'lm-format-enforcer', 'xgrammar', 'guidance'
v0_valid_guided_backends = [
'outlines', 'lm-format-enforcer', 'xgrammar'
]
v1_valid_guided_backends = ['xgrammar', 'guidance', 'auto']
backend = GuidedDecodingParams(
backend=self.guided_decoding_backend).backend_name
if envs.VLLM_USE_V1:
valid_guided_backends = v1_valid_guided_backends
else:
valid_guided_backends = v0_valid_guided_backends
if backend not in valid_guided_backends:
raise ValueError(f"Invalid guided_decoding_backend '{backend}',"
f" must be one of {valid_guided_backends}")

View File

@ -391,16 +391,13 @@ class EngineArgs:
default='xgrammar',
help='Which engine will be used for guided decoding'
' (JSON schema / regex etc) by default. Currently support '
'https://github.com/outlines-dev/outlines, '
'https://github.com/mlc-ai/xgrammar, and '
'https://github.com/noamgat/lm-format-enforcer.'
' Can be overridden per request via guided_decoding_backend'
' parameter.\n'
'Backend-specific options can be supplied in a comma-separated '
'list following a colon after the backend name. Valid backends and '
'all available options are: [xgrammar:no-fallback, '
'xgrammar:disable-any-whitespace, '
'outlines:no-fallback, lm-format-enforcer:no-fallback]')
'https://github.com/mlc-ai/xgrammar and '
'https://github.com/guidance-ai/llguidance.'
'Valid backend values are "xgrammar", "guidance", and "auto". '
'With "auto", we will make opinionated choices based on request'
'contents and what the backend libraries currently support, so '
'the behavior is subject to change in each release. '
'The default is xgrammar.')
parser.add_argument(
'--logits-processor-pattern',
type=nullable_str,
@ -1539,9 +1536,9 @@ class EngineArgs:
recommend_to_remove=False)
return False
# Only support Xgrammar for guided decoding so far.
# Xgrammar and Guidance are supported.
SUPPORTED_GUIDED_DECODING = [
"xgrammar", "xgrammar:disable-any-whitespace"
"xgrammar", "xgrammar:disable-any-whitespace", "guidance", "auto"
]
if self.guided_decoding_backend not in SUPPORTED_GUIDED_DECODING:
_raise_or_fallback(feature_name="--guided-decoding-backend",

View File

@ -4,7 +4,6 @@ import time
from collections.abc import Mapping
from typing import Optional, Union
import vllm.platforms
from vllm.config import VllmConfig
from vllm.inputs import (INPUT_REGISTRY, InputRegistry, ProcessorInputs,
PromptType, SingletonInputsAdapter)
@ -20,7 +19,10 @@ from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer_group import BaseTokenizerGroup
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.structured_output.utils import validate_structured_output_request
from vllm.v1.structured_output.backend_guidance import (
validate_guidance_grammar)
from vllm.v1.structured_output.utils import (
validate_structured_output_request_xgrammar)
class Processor:
@ -120,7 +122,9 @@ class Processor:
if not params.guided_decoding or not self.decoding_config:
return
supported_backends = ["xgrammar", "xgrammar:disable-any-whitespace"]
supported_backends = [
"xgrammar", "xgrammar:disable-any-whitespace", "guidance", "auto"
]
engine_level_backend = self.decoding_config.guided_decoding_backend
if engine_level_backend not in supported_backends:
raise ValueError(f"Only {supported_backends} structured output is "
@ -134,10 +138,31 @@ class Processor:
else:
params.guided_decoding.backend = engine_level_backend
if vllm.platforms.current_platform.is_tpu():
raise ValueError("Structured output is not supported on TPU.")
# Request content validation
validate_structured_output_request(params)
if engine_level_backend == "xgrammar":
# xgrammar with no fallback
validate_structured_output_request_xgrammar(params)
params.guided_decoding.backend = "xgrammar"
elif engine_level_backend == "auto":
# "auto" is an opt-in to opinionated behavior where we try to
# choose a backend based on request contents. This is not the
# default as it is less predictable and subject to change
# between releases as feature support changes.
try:
validate_structured_output_request_xgrammar(params)
params.guided_decoding.backend = "xgrammar"
except ValueError:
# The request includes some jsonschema feature(s) that
# are not supported in xgrammar. Fall back to guidance.
params.guided_decoding.backend = "guidance"
if params.guided_decoding.backend == "guidance":
# TODO ideally we would have the LLTokenizer here as Lark syntax
# allows <|special_token|> and similar, see
# https://github.com/guidance-ai/llguidance/blob/main/docs/syntax.md#special-tokens
# Without tokenizer these are disallowed in grammars.
validate_guidance_grammar(params, tokenizer=None)
def process_inputs(
self,

View File

@ -7,6 +7,7 @@ from typing import TYPE_CHECKING, Optional
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.v1.structured_output.backend_guidance import GuidanceBackend
from vllm.v1.structured_output.backend_types import (StructuredOutputBackend,
StructuredOutputGrammar)
@ -50,6 +51,8 @@ class StructuredOutputManager:
XgrammarBackend)
self.backend = XgrammarBackend(self.vllm_config)
elif backend_name == "guidance":
self.backend = GuidanceBackend(self.vllm_config)
else:
raise ValueError(
f"Unsupported structured output backend: {backend_name}")

View File

@ -0,0 +1,164 @@
# SPDX-License-Identifier: Apache-2.0
import os
from dataclasses import dataclass
from typing import TYPE_CHECKING, Optional
import torch
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer_group import init_tokenizer_from_configs
from vllm.utils import LazyLoader
from vllm.v1.structured_output.backend_types import (StructuredOutputBackend,
StructuredOutputGrammar,
StructuredOutputOptions)
from vllm.v1.structured_output.request import get_structured_output_key
if TYPE_CHECKING:
import llguidance
import llguidance.hf as llguidance_hf
import llguidance.torch as llguidance_torch
else:
llguidance = LazyLoader("llguidance", globals(), "llguidance")
llguidance_hf = LazyLoader("llguidance.hf", globals(), "llguidance.hf")
llguidance_torch = LazyLoader("llguidance.torch", globals(),
"llguidance.torch")
logger = init_logger(__name__)
class GuidanceBackend(StructuredOutputBackend):
def __init__(self, vllm_config: VllmConfig):
self.vllm_config = vllm_config
tokenizer_group = init_tokenizer_from_configs(
model_config=vllm_config.model_config,
scheduler_config=vllm_config.scheduler_config,
parallel_config=vllm_config.parallel_config,
lora_config=vllm_config.lora_config) # type: ignore[arg-type]
tokenizer_group.ping()
self.vllm_config = vllm_config
self.vocab_size = vllm_config.model_config.get_vocab_size()
tokenizer = tokenizer_group.get_lora_tokenizer(None)
self.ll_tokenizer = llguidance_hf.from_tokenizer(tokenizer, None)
def compile_grammar(self, request_type: StructuredOutputOptions,
grammar_spec: str) -> StructuredOutputGrammar:
self.serialized_grammar = serialize_guidance_grammar(
request_type, grammar_spec)
ll_matcher = llguidance.LLMatcher(
self.ll_tokenizer,
self.serialized_grammar,
log_level=int(os.environ.get("LLGUIDANCE_LOG_LEVEL", "1")),
)
r = GuidanceGrammar(
ll_matcher=ll_matcher,
ll_tokenizer=self.ll_tokenizer,
vocab_size=self.vocab_size,
)
r.check_error()
return r
def allocate_token_bitmask(self, max_num_seqs: int):
return llguidance_torch.allocate_token_bitmask(
max_num_seqs, self.ll_tokenizer.vocab_size)
@dataclass
class GuidanceGrammar(StructuredOutputGrammar):
ll_matcher: llguidance.LLMatcher
ll_tokenizer: llguidance.LLTokenizer
vocab_size: int
printed_error: bool = False
terminated: bool = False
def check_error(self):
if not self.printed_error:
err = self.ll_matcher.get_error()
if err:
self.printed_error = True
logger.warning("LLMatcher error: %s", err)
def accept_tokens(self, request_id: str, tokens: list[int]) -> bool:
"""Accepts a list of tokens and advances the parser.
Returns True if the parser was advanced successfully.
Returns False if the parser failed to advance.
"""
if self.ll_tokenizer.eos_token in tokens:
self.terminated = True
if self.ll_matcher.is_stopped():
return True
# TODO - Add jump decoding support in the future:
# self.ll_matcher.compute_ff_bytes() - this should always work
# self.ll_matcher.compute_ff_tokens() - this only works for
# "canonical" tokenizers
# For conversion between the two, see
# https://github.com/guidance-ai/llguidance/blob/main/docs/fast_forward.md
r = self.ll_matcher.consume_tokens(tokens)
self.check_error()
return r
def fill_bitmask(self, bitmask: torch.Tensor, idx: int) -> None:
# this will automatically return [EOS] mask if the matcher is stopped
# or otherwise in an error state
llguidance_torch.fill_next_token_bitmask(self.ll_matcher, bitmask, idx)
self.check_error()
def is_terminated(self) -> bool:
return self.terminated
def reset(self):
# This method may be not needed anymore? TODO
self.ll_matcher.reset()
def serialize_guidance_grammar(request_type: StructuredOutputOptions,
grammar_spec: str) -> str:
if request_type == StructuredOutputOptions.JSON:
# TODO: make whitespace_flexible configurable
return llguidance.LLMatcher.grammar_from_json_schema(
grammar_spec, defaults={
"whitespace_flexible": True,
})
elif request_type == StructuredOutputOptions.JSON_OBJECT:
return llguidance.LLMatcher.grammar_from_json_schema(
'{"type": "object"}', defaults={
"whitespace_flexible": True,
})
else:
if request_type == StructuredOutputOptions.REGEX:
tp = "regex"
elif request_type == StructuredOutputOptions.GRAMMAR:
tp = "grammar"
elif request_type == StructuredOutputOptions.CHOICE:
tp = "choice"
else:
logger.error("Validation should have already occurred. "
"Please file an issue.")
raise ValueError("grammar is not of valid supported types. "
f"({request_type!s})")
return llguidance.grammar_from(tp, grammar_spec)
def validate_guidance_grammar(
sampling_params: SamplingParams,
tokenizer: Optional[llguidance.LLTokenizer] = None) -> None:
tp, grm = get_structured_output_key(sampling_params)
guidance_grm = serialize_guidance_grammar(tp, grm)
err = llguidance.LLMatcher.validate_grammar(guidance_grm,
tokenizer=tokenizer)
if err:
raise ValueError(f"Grammar error: {err}")

View File

@ -53,25 +53,30 @@ class StructuredOutputRequest:
@functools.cached_property
def structured_output_key(self) -> StructuredOutputKey:
params = self.sampling_params.guided_decoding
assert params is not None, "params can't be None."
if params.json is not None:
if not isinstance(params.json, str):
json_str = json.dumps(params.json)
else:
json_str = params.json
return (StructuredOutputOptions.JSON, json_str)
elif params.json_object:
return (StructuredOutputOptions.JSON_OBJECT, "")
elif params.regex is not None:
return (StructuredOutputOptions.REGEX, params.regex)
elif params.choice is not None:
if not isinstance(params.choice, str):
json_str = json.dumps(params.choice)
else:
json_str = params.choice
return (StructuredOutputOptions.CHOICE, json_str)
elif params.grammar is not None:
return (StructuredOutputOptions.GRAMMAR, params.grammar)
return get_structured_output_key(self.sampling_params)
def get_structured_output_key(
sampling_params: SamplingParams) -> StructuredOutputKey:
params = sampling_params.guided_decoding
assert params is not None, "params can't be None."
if params.json is not None:
if not isinstance(params.json, str):
json_str = json.dumps(params.json)
else:
raise ValueError("No valid structured output parameter found")
json_str = params.json
return (StructuredOutputOptions.JSON, json_str)
elif params.json_object:
return (StructuredOutputOptions.JSON_OBJECT, "")
elif params.regex is not None:
return (StructuredOutputOptions.REGEX, params.regex)
elif params.choice is not None:
if not isinstance(params.choice, str):
json_str = json.dumps(params.choice)
else:
json_str = params.choice
return (StructuredOutputOptions.CHOICE, json_str)
elif params.grammar is not None:
return (StructuredOutputOptions.GRAMMAR, params.grammar)
else:
raise ValueError("No valid structured output parameter found")

View File

@ -239,7 +239,7 @@ def choice_as_grammar(choice: list[str]) -> str:
return grammar
def validate_structured_output_request(
def validate_structured_output_request_xgrammar(
sampling_params: SamplingParams) -> None:
"""Validate that the request is supported by structured output.