[Kernel] Enable 8-bit weights in Fused Marlin MoE (#8032)

Co-authored-by: Dipika <dipikasikka1@gmail.com>
This commit is contained in:
ElizaWszola 2024-09-16 17:47:19 +02:00 committed by GitHub
parent fc990f9795
commit a091e2da3e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 452 additions and 184 deletions

View File

@ -25,6 +25,8 @@
#include <iostream>
#include "core/scalar_type.hpp"
template <typename T>
inline std::string str(T x) {
return std::to_string(x);
@ -131,11 +133,26 @@ __device__ inline int lop3(int a, int b, int c) {
return res;
}
// Efficiently dequantize an int32 value into a full B-fragment of 4 fp16
// values. We mostly follow the strategy in the link below, with some small
// changes:
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
__device__ inline FragB dequant(int q) {
// Constructs destination register by taking bytes from 2 sources (based on
// mask)
template <int start_byte, int mask>
__device__ inline uint32_t prmt(uint32_t a) {
uint32_t res;
asm volatile("prmt.b32 %0, %1, %2, %3;\n"
: "=r"(res)
: "r"(a), "n"(start_byte), "n"(mask));
return res;
}
template <vllm::ScalarTypeId w_type_id>
__device__ inline FragB dequant(int q);
// Efficiently dequantize 4bit values packed in an int32 value into a full
// B-fragment of 4 fp16 values. We mostly follow the strategy in the link below,
// with some small changes:
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L215-L287
template <>
__device__ inline FragB dequant<vllm::kU4B8.id()>(int q) {
const int LO = 0x000f000f;
const int HI = 0x00f000f0;
const int EX = 0x64006400;
@ -156,6 +173,28 @@ __device__ inline FragB dequant(int q) {
return frag_b;
}
// Fast Int8ToFp16: Efficiently dequantize 8bit int values to fp16
// Reference:
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L53-L85
template <>
__device__ inline FragB dequant<vllm::kU8B128.id()>(int q) {
static constexpr uint32_t mask_for_elt_01 = 0x5250;
static constexpr uint32_t mask_for_elt_23 = 0x5351;
static constexpr uint32_t start_byte_for_fp16 = 0x64646464;
uint32_t lo = prmt<start_byte_for_fp16, mask_for_elt_01>(q);
uint32_t hi = prmt<start_byte_for_fp16, mask_for_elt_23>(q);
static constexpr uint32_t I8s_TO_F16s_MAGIC_NUM = 0x64806480;
FragB frag_b;
frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
*reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
frag_b[1] = __hsub2(*reinterpret_cast<half2*>(&hi),
*reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
return frag_b;
}
// Multiply dequantized values by the corresponding quantization scale; used
// only for grouped quantization.
__device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) {
@ -296,7 +335,8 @@ __global__ void compute_expert_offsets(int const* __restrict__ topk_ids,
__syncthreads();
}
template <const int threads, // number of threads in a threadblock
template <const vllm::ScalarTypeId w_type_id, // weight ScalarType id
const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the
// threadblock
@ -331,6 +371,9 @@ __device__ inline void MarlinMoESingle(
bool apply_weights, // apply weights to output
int current_m_block // current m block to start kernel computation from
) {
static constexpr auto w_type = vllm::ScalarType::from_id(w_type_id);
constexpr int pack_factor = 32 / w_type.size_bits();
// For larger GEMMs we run multiple batchsize 64 versions in parallel for a
// better partitioning with less reductions
int parallel = 1;
@ -423,21 +466,25 @@ __device__ inline void MarlinMoESingle(
constexpr int a_sh_wr_iters = ceildiv(a_sh_stage, a_sh_wr_delta);
// B sizes/strides
int b_gl_stride = 16 * prob_n / 32;
constexpr int b_sh_stride = 32 * thread_n_blocks / 4;
int b_gl_stride = 16 * prob_n / (pack_factor * 4);
constexpr int b_sh_stride = ((thread_n_blocks * 16) * 16 / pack_factor) / 4;
constexpr int b_thread_vecs = w_type.size_bits() == 4 ? 1 : 2;
constexpr int b_sh_stride_threads = b_sh_stride / b_thread_vecs;
int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks;
int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride);
constexpr int b_sh_wr_delta = threads;
constexpr int b_sh_rd_delta = threads;
int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride_threads);
constexpr int b_sh_wr_delta = threads * b_thread_vecs;
constexpr int b_sh_rd_delta = threads * b_thread_vecs;
constexpr int b_sh_stage = b_sh_stride * thread_k_blocks;
constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta;
// Scale sizes/strides without act_order
int s_gl_stride = prob_n / 8;
constexpr int s_sh_stride = 16 * thread_n_blocks / 8;
constexpr int s_tb_groups = !has_act_order && group_blocks < thread_k_blocks
? thread_k_blocks / group_blocks
: 1;
constexpr int s_tb_groups =
!has_act_order && group_blocks != -1 && group_blocks < thread_k_blocks
? thread_k_blocks / group_blocks
: 1;
constexpr int s_sh_stage = s_tb_groups * s_sh_stride;
int s_gl_rd_delta = s_gl_stride;
// Scale size/strides with act_order
@ -465,12 +512,12 @@ __device__ inline void MarlinMoESingle(
a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16;
a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4));
int b_gl_rd =
b_gl_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride);
int b_gl_rd = b_gl_stride * (threadIdx.x / b_sh_stride_threads) +
(threadIdx.x % b_sh_stride_threads) * b_thread_vecs;
b_gl_rd += b_sh_stride * slice_col;
b_gl_rd += b_gl_rd_delta_o * slice_row;
int b_sh_wr = threadIdx.x;
int b_sh_rd = threadIdx.x;
int b_sh_wr = threadIdx.x * b_thread_vecs;
int b_sh_rd = threadIdx.x * b_thread_vecs;
// For act_order
constexpr int k_iter_size = tb_k / b_sh_wr_iters;
@ -481,11 +528,13 @@ __device__ inline void MarlinMoESingle(
// No act_order
int s_gl_rd;
if constexpr (group_blocks == -1 || group_blocks == 0) {
s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
} else {
s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) +
s_sh_stride * slice_col + threadIdx.x;
if constexpr (!has_act_order) {
if constexpr (group_blocks == -1) {
s_gl_rd = s_sh_stride * slice_col + threadIdx.x;
} else {
s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) +
s_sh_stride * slice_col + threadIdx.x;
}
}
int s_sh_wr = threadIdx.x;
bool s_sh_wr_pred = threadIdx.x < s_sh_stride;
@ -571,7 +620,7 @@ __device__ inline void MarlinMoESingle(
// Register storage for double buffer of shared memory reads.
FragA frag_a[2][thread_m_blocks];
I4 frag_b_quant[2];
I4 frag_b_quant[2][b_thread_vecs];
FragC frag_c[thread_m_blocks][4][2];
FragS frag_s[2][4]; // No act-order
FragS act_frag_s[2][4][4]; // For act-order
@ -637,7 +686,10 @@ __device__ inline void MarlinMoESingle(
int4* sh_b_stage = sh_b + b_sh_stage * pipe;
#pragma unroll
for (int i = 0; i < b_sh_wr_iters; i++) {
cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]);
#pragma unroll
for (int j = 0; j < b_thread_vecs; j++) {
cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr + j], B_ptr[i] + j);
}
B_ptr[i] += b_gl_rd_delta_o;
}
@ -715,14 +767,24 @@ __device__ inline void MarlinMoESingle(
for (int i = 0; i < thread_m_blocks; i++)
ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]);
int4* sh_b_stage = sh_b + b_sh_stage * pipe;
frag_b_quant[k % 2] = *reinterpret_cast<I4*>(
&sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd]);
#pragma unroll
for (int i = 0; i < b_thread_vecs; i++) {
frag_b_quant[k % 2][i] = *reinterpret_cast<I4*>(
&sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd + i]);
}
};
bool is_same_group[stages];
int same_group_id[stages];
auto init_same_group = [&](int pipe) {
if constexpr (!has_act_order) {
is_same_group[pipe] = false;
same_group_id[pipe] = 0;
return;
}
int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe;
int* sh_g_idx_int_ptr = reinterpret_cast<int*>(sh_g_idx_stage);
@ -840,10 +902,19 @@ __device__ inline void MarlinMoESingle(
// dequantization and matmul operations.
#pragma unroll
for (int j = 0; j < 4; j++) {
int b_quant = frag_b_quant[k % 2][j];
int b_quant_shift = b_quant >> 8;
int b_quant_0, b_quant_1;
if constexpr (w_type.size_bits() == 4) {
b_quant_0 = frag_b_quant[k % 2][0][j];
b_quant_1 = b_quant_0 >> 8;
} else {
static_assert(w_type.size_bits() == 8);
int* frag_b_quant_ptr = reinterpret_cast<int*>(frag_b_quant[k % 2]);
b_quant_0 = frag_b_quant_ptr[j * 2 + 0];
b_quant_1 = frag_b_quant_ptr[j * 2 + 1];
}
FragB frag_b0 = dequant(b_quant);
FragB frag_b0 = dequant<w_type_id>(b_quant_0);
FragB frag_b1 = dequant<w_type_id>(b_quant_1);
// Apply scale to frag_b0
if constexpr (has_act_order) {
@ -855,8 +926,6 @@ __device__ inline void MarlinMoESingle(
}
}
FragB frag_b1 = dequant(b_quant_shift);
// Apply scale to frag_b1
if constexpr (has_act_order) {
scale4(frag_b1, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j],
@ -881,13 +950,13 @@ __device__ inline void MarlinMoESingle(
// multiple warps that accumulate their partial sums of the same output
// location; which we have to reduce over in the end. We do in shared memory.
auto thread_block_reduce = [&]() {
constexpr int red_off = threads / b_sh_stride / 2;
constexpr int red_off = threads / b_sh_stride_threads / 2;
if (red_off >= 1) {
int red_idx = threadIdx.x / b_sh_stride;
constexpr int red_sh_stride = b_sh_stride * 4 * 2;
constexpr int red_sh_delta = b_sh_stride;
int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride) +
(threadIdx.x % b_sh_stride);
int red_idx = threadIdx.x / b_sh_stride_threads;
constexpr int red_sh_stride = b_sh_stride_threads * 4 * 2;
constexpr int red_sh_delta = b_sh_stride_threads;
int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride_threads) +
(threadIdx.x % b_sh_stride_threads);
// Parallel logarithmic shared memory reduction. We make sure to avoid any
// unnecessary read or write iterations, e.g., for two warps we write only
@ -1035,8 +1104,10 @@ __device__ inline void MarlinMoESingle(
auto write = [&](int idx, float c0, float c1, FragS& s) {
half2 res = __halves2half2(__float2half(c0), __float2half(c1));
// For per-column quantization we finally apply the scale here
if constexpr (!has_act_order && group_blocks == -1) {
// For per-column quantization we finally apply the scale here (only for
// 4-bit)
if constexpr (!has_act_order && group_blocks == -1 &&
w_type.size_bits() == 4) {
res = __hmul2(res, s[0]);
}
@ -1088,9 +1159,9 @@ __device__ inline void MarlinMoESingle(
// Start global fetch and register load pipelines.
auto start_pipes = [&]() {
// TODO re-enable after fixing this function
// fetch_sorted_ids_to_shared();
__syncthreads();
// TODO re-enable after fixing this function
// fetch_sorted_ids_to_shared();
// __syncthreads();
#pragma unroll
for (int i = 0; i < stages - 1; i++) {
@ -1166,28 +1237,70 @@ __device__ inline void MarlinMoESingle(
if (slice_iters == 0) {
cp_async_wait<0>();
bool last = slice_idx == slice_count - 1;
// For per-column scales, we only fetch them here in the final step before
// write-out
if constexpr (!has_act_order && group_blocks == -1) {
if (last) {
if constexpr (w_type.size_bits() == 8) {
if (s_sh_wr_pred) {
cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]);
}
cp_async_fence();
} else {
// For 4-bit per-column scales, we only fetch them here in the
// final step before write-out
if (last) {
if (s_sh_wr_pred) {
cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]);
}
cp_async_fence();
}
}
}
thread_block_reduce();
if constexpr (!has_act_order && group_blocks == -1) {
if (last) {
if constexpr (w_type.size_bits() == 8) {
cp_async_wait<0>();
__syncthreads();
if (threadIdx.x / 32 < thread_n_blocks / 4) {
reinterpret_cast<int4*>(&frag_s)[0] = sh_s[s_sh_rd + 0];
reinterpret_cast<int4*>(&frag_s)[1] = sh_s[s_sh_rd + 4];
}
} else {
if (last) {
cp_async_wait<0>();
__syncthreads();
if (threadIdx.x / 32 < thread_n_blocks / 4) {
reinterpret_cast<int4*>(&frag_s)[0] = sh_s[s_sh_rd + 0];
reinterpret_cast<int4*>(&frag_s)[1] = sh_s[s_sh_rd + 4];
}
}
}
}
// For 8-bit channelwise, we apply the scale before the global reduction
// that converts the fp32 results to fp16 (so that we avoid possible
// overflow in fp16)
if constexpr (!has_act_order && group_blocks == -1 &&
w_type.size_bits() == 8) {
if (threadIdx.x / 32 < thread_n_blocks / 4) {
#pragma unroll
for (int i = 0; i < thread_m_blocks; i++) {
#pragma unroll
for (int j = 0; j < 4; j++) {
scale_float(reinterpret_cast<float*>(&frag_c[i][j][0][0]),
frag_s[j / 2][2 * (j % 2) + 0]);
scale_float(reinterpret_cast<float*>(&frag_c[i][j][0][2]),
frag_s[j / 2][2 * (j % 2) + 0]);
scale_float(reinterpret_cast<float*>(&frag_c[i][j][1][0]),
frag_s[j / 2][2 * (j % 2) + 1]);
scale_float(reinterpret_cast<float*>(&frag_c[i][j][1][2]),
frag_s[j / 2][2 * (j % 2) + 1]);
}
}
}
}
if (slice_count > 1) { // only globally reduce if there is more than one
// block in a slice
barrier_acquire(&locks[slice_col], slice_idx);
@ -1227,7 +1340,8 @@ __device__ inline void MarlinMoESingle(
}
}
template <const int threads, // number of threads in a threadblock
template <const vllm::ScalarTypeId w_type_id, // weight ScalarType id
const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the
// threadblock
@ -1261,7 +1375,8 @@ __global__ void MarlinMoE(
bool replicate_input, // do we use the same input for each expert?
bool apply_weights, // apply weights to output
int current_m_block, // current m block to start kernel computation from
int max_par // maximum parallelism
int max_par, // maximum parallelism
int cfg_max_m_blocks // upper bound on m blocks
) {
int m_block_ctr = current_m_block;
@ -1282,40 +1397,40 @@ __global__ void MarlinMoE(
prob_m = tot_its - 16 * m_block_ctr;
int par = 1;
if (max_block > 4) {
if (max_block > cfg_max_m_blocks) {
// Note that parallel > 1 currently only works for inputs without any
// padding
par = (16 * max_block - pad) / 64;
par = min((16 * max_block - pad) / 64, max_par);
prob_m = 64 * par;
m_block_ctr += 4 * (par - 1);
max_block = 4;
par = (16 * max_block - pad) / (16 * cfg_max_m_blocks);
if (par > max_par) par = max_par;
prob_m = (16 * cfg_max_m_blocks) * par;
m_block_ctr += cfg_max_m_blocks * (par - 1);
max_block = cfg_max_m_blocks;
}
if (max_block == 1) {
MarlinMoESingle<threads, 1, thread_n_blocks, thread_k_blocks, stages,
has_act_order, group_blocks>(
MarlinMoESingle<w_type_id, threads, 1, thread_n_blocks, thread_k_blocks,
stages, has_act_order, group_blocks>(
A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx,
expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m,
prob_n, prob_k, tot_m, locks, replicate_input, apply_weights,
current_m_block);
} else if (max_block == 2) {
MarlinMoESingle<threads, 2, thread_n_blocks, thread_k_blocks, stages,
has_act_order, group_blocks>(
MarlinMoESingle<w_type_id, threads, 2, thread_n_blocks, thread_k_blocks,
stages, has_act_order, group_blocks>(
A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx,
expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m,
prob_n, prob_k, tot_m, locks, replicate_input, apply_weights,
current_m_block);
} else if (max_block == 3) {
MarlinMoESingle<threads, 3, thread_n_blocks, thread_k_blocks, stages,
has_act_order, group_blocks>(
MarlinMoESingle<w_type_id, threads, 3, thread_n_blocks, thread_k_blocks,
stages, has_act_order, group_blocks>(
A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx,
expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m,
prob_n, prob_k, tot_m, locks, replicate_input, apply_weights,
current_m_block);
} else {
MarlinMoESingle<threads, 4, thread_n_blocks, thread_k_blocks, stages,
has_act_order, group_blocks>(
MarlinMoESingle<w_type_id, threads, 4, thread_n_blocks, thread_k_blocks,
stages, has_act_order, group_blocks>(
A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx,
expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m,
prob_n, prob_k, tot_m, locks, replicate_input, apply_weights,
@ -1342,7 +1457,8 @@ __global__ void compute_expert_offsets(int const* __restrict__ topk_ids,
return;
}
template <const int threads, // number of threads in a threadblock
template <const vllm::ScalarTypeId w_type_id, // weight ScalarType id
const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the
// threadblock
@ -1376,7 +1492,9 @@ __global__ void MarlinMoE(
bool replicate_input, // do we use the same input for each expert?
bool apply_weights, // apply weights to output
int current_m_block, // current m block to start kernel computation from
int max_par // maximum parallelism
int max_par, // maximum parallelism
int cfg_max_m_blocks // upper bound on m blocks
) {
// Marlin is not implemented yet for SM < 8.0
assert(false);
@ -1397,24 +1515,26 @@ const int STAGES = 4; // 4 pipeline stages fit into shared memory
static constexpr int min_thread_n = 64;
static constexpr int min_thread_k = 64;
#define __CALL_IF_MOE(THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
HAS_ACT_ORDER, GROUP_BLOCKS, NUM_THREADS) \
else if (thread_m_blocks == THREAD_M_BLOCKS && \
#define __CALL_IF_MOE(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \
THREAD_K_BLOCKS, HAS_ACT_ORDER, GROUP_BLOCKS, \
NUM_THREADS) \
else if (q_type == W_TYPE && thread_m_blocks == THREAD_M_BLOCKS && \
thread_n_blocks == THREAD_N_BLOCKS && \
thread_k_blocks == THREAD_K_BLOCKS && \
has_act_order == HAS_ACT_ORDER && group_blocks == GROUP_BLOCKS && \
num_threads == NUM_THREADS) { \
cudaFuncSetAttribute( \
MarlinMoE<NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \
MarlinMoE<W_TYPE.id(), NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \
THREAD_K_BLOCKS, STAGES, HAS_ACT_ORDER, GROUP_BLOCKS>, \
cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \
MarlinMoE<NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
STAGES, HAS_ACT_ORDER, GROUP_BLOCKS> \
MarlinMoE<W_TYPE.id(), NUM_THREADS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \
THREAD_K_BLOCKS, STAGES, HAS_ACT_ORDER, GROUP_BLOCKS> \
<<<blocks, NUM_THREADS, max_shared_mem, stream>>>( \
A_ptr, B_ptr, C_ptr, sorted_ids_ptr, topk_weights_ptr, s_ptr, \
g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \
num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, \
replicate_input, apply_weights, m_block, max_par); \
replicate_input, apply_weights, m_block, max_par, \
exec_cfg.max_m_blocks); \
}
typedef struct {
@ -1423,6 +1543,11 @@ typedef struct {
int num_threads;
} thread_config_t;
typedef struct {
int max_m_blocks;
thread_config_t tb_cfg;
} exec_config_t;
thread_config_t small_batch_thread_configs[] = {
// Ordered by priority
@ -1443,8 +1568,77 @@ thread_config_t large_batch_thread_configs[] = {
{128, 64, 128}, // Reduce N 4X, increase K 2X
};
bool is_valid_config(thread_config_t const& th_config, int prob_m, int prob_n,
int prob_k) {
int get_scales_cache_size(thread_config_t const& th_config, int prob_m,
int prob_n, int prob_k, int num_bits, int group_size,
bool has_act_order, bool is_k_full) {
bool cache_scales_chunk = has_act_order && !is_k_full;
int tb_n = th_config.thread_n;
int tb_k = th_config.thread_k;
// Get max scale groups per thread-block
int tb_groups;
if (group_size == -1) {
tb_groups = 1;
} else if (group_size == 0) {
tb_groups = ceildiv(tb_k, 32); // Worst case is 32 group size
} else {
tb_groups = ceildiv(tb_k, group_size);
}
if (cache_scales_chunk) {
int load_groups =
tb_groups * STAGES * 2; // Chunk size is 2x pipeline over dim K
load_groups = max(load_groups, 32); // We load at least 32 scale groups
return load_groups * tb_n * 2;
} else {
int tb_scales = tb_groups * tb_n * 2;
return tb_scales * STAGES;
}
}
bool is_valid_cache_size(thread_config_t const& th_config, int max_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int scales_cache_size, int max_shared_mem) {
int pack_factor = 32 / num_bits;
// Get B size
int tb_k = th_config.thread_k;
int tb_n = th_config.thread_n;
int b_size = (tb_k * tb_n / pack_factor) * 4;
// Get A size
int m_blocks = ceildiv(prob_m, 16);
int tb_max_m = 16;
while (true) {
if (m_blocks >= max_m_blocks) {
tb_max_m *= max_m_blocks;
break;
}
max_m_blocks--;
if (max_m_blocks == 0) {
TORCH_CHECK(false, "Unexpected m_blocks = ", m_blocks);
}
}
int a_size = (tb_max_m * tb_k) * 2;
float pipe_size = (a_size + b_size) * STAGES;
TORCH_CHECK(max_shared_mem / 2 > scales_cache_size); // Sanity
return pipe_size < 0.95f * (max_shared_mem - scales_cache_size);
}
bool is_valid_config(thread_config_t const& th_config, int max_m_blocks,
int prob_m, int prob_n, int prob_k, int num_bits,
int group_size, bool has_act_order, bool is_k_full,
int max_shared_mem) {
// Sanity
if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
th_config.num_threads == -1) {
@ -1472,64 +1666,88 @@ bool is_valid_config(thread_config_t const& th_config, int prob_m, int prob_n,
return false;
}
// Determine cache for scales
int scales_cache_size =
get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
group_size, has_act_order, is_k_full);
// Check that pipeline fits into cache
if (!is_valid_cache_size(th_config, max_m_blocks, prob_m, prob_n, prob_k,
num_bits, scales_cache_size, max_shared_mem)) {
return false;
}
return true;
}
thread_config_t determine_thread_config(int prob_m, int prob_n, int prob_k) {
if (prob_m <= 16) {
for (auto th_config : small_batch_thread_configs) {
if (is_valid_config(th_config, prob_m, prob_n, prob_k)) {
return th_config;
exec_config_t determine_thread_config(int prob_m, int prob_n, int prob_k,
int num_bits, int group_size,
bool has_act_order, bool is_k_full,
int max_shared_mem) {
int max_m_blocks = 4;
while (max_m_blocks > 0) {
if (prob_m <= 16) {
for (auto th_config : small_batch_thread_configs) {
if (is_valid_config(th_config, max_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full,
max_shared_mem)) {
return exec_config_t{max_m_blocks, th_config};
}
}
} else {
for (auto th_config : large_batch_thread_configs) {
if (is_valid_config(th_config, max_m_blocks, prob_m, prob_n, prob_k,
num_bits, group_size, has_act_order, is_k_full,
max_shared_mem)) {
return exec_config_t{max_m_blocks, th_config};
}
}
}
} else {
for (auto th_config : large_batch_thread_configs) {
if (is_valid_config(th_config, prob_m, prob_n, prob_k)) {
return th_config;
}
}
max_m_blocks--; // Process less M blocks per invocation to reduce cache
// usage
}
return thread_config_t{-1, -1, -1};
return exec_config_t{0, {-1, -1, -1}};
}
#define CALL_IF_MOE(N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
__CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
__CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
__CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
\
__CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
__CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
__CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
__CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \
\
__CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
__CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
__CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
__CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \
\
__CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
__CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
__CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
__CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \
\
__CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
__CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
__CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
__CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS)
#define CALL_IF_MOE(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 2, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 3, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 4, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \
\
__CALL_IF_MOE(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \
\
__CALL_IF_MOE(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \
\
__CALL_IF_MOE(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \
\
__CALL_IF_MOE(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \
__CALL_IF_MOE(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS)
void marlin_mm_moe_f16i4(const void* A, const void* B, void* C,
const void* sorted_ids, const void* topk_weights,
const void* topk_ids, const void* s, const void* g_idx,
const void* perm, void* a_tmp, void* expert_offsets,
int prob_m, int prob_n, int prob_k, void* workspace,
bool has_act_order, bool is_k_full, int num_groups,
int group_size, int num_experts, int topk,
int moe_block_size, int dev, cudaStream_t stream,
int thread_k, int thread_n, int sms, int max_par,
bool replicate_input, bool apply_weights) {
vllm::ScalarType const& q_type, bool has_act_order,
bool is_k_full, int num_groups, int group_size,
int num_experts, int topk, int moe_block_size, int dev,
cudaStream_t stream, int thread_k, int thread_n,
int sms, int max_par, bool replicate_input,
bool apply_weights) {
TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
", ", prob_n, ", ", prob_k, "]");
@ -1537,26 +1755,42 @@ void marlin_mm_moe_f16i4(const void* A, const void* B, void* C,
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev);
}
int max_shared_mem = 0;
cudaDeviceGetAttribute(&max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
TORCH_CHECK(max_shared_mem > 0);
int num_bits = q_type.size_bits();
// Set thread config
thread_config_t th_config;
exec_config_t exec_cfg;
if (thread_k != -1 && thread_n != -1) {
// User-defined config
th_config = thread_config_t{thread_k, thread_n, USER_THREADS};
exec_cfg =
exec_config_t{4, thread_config_t{thread_k, thread_n, USER_THREADS}};
} else {
// Auto config
th_config = determine_thread_config(prob_m, prob_n, prob_k);
exec_cfg =
determine_thread_config(prob_m, prob_n, prob_k, num_bits, group_size,
has_act_order, is_k_full, max_shared_mem);
}
TORCH_CHECK(is_valid_config(th_config, prob_m, prob_n, prob_k),
"Invalid thread config: thread_k = " + str(th_config.thread_k) +
", thread_n = " + str(th_config.thread_n) +
", num_threads = " + str(th_config.num_threads) +
" for MKN = [" + str(prob_m) + ", " + str(prob_k) + ", " +
str(prob_n) + "]");
TORCH_CHECK(exec_cfg.max_m_blocks > 0 &&
is_valid_config(exec_cfg.tb_cfg, exec_cfg.max_m_blocks,
prob_m, prob_n, prob_k, num_bits, group_size,
has_act_order, is_k_full, max_shared_mem),
"Invalid thread config: max_m_blocks = ", exec_cfg.max_m_blocks,
", thread_k = ", exec_cfg.tb_cfg.thread_k,
", thread_n = ", exec_cfg.tb_cfg.thread_n,
", num_threads = ", exec_cfg.tb_cfg.num_threads, " for MKN = [",
prob_m, ", ", prob_k, ", ", prob_n, "] and num_bits = ", num_bits,
", group_size = ", group_size,
", has_act_order = ", has_act_order, ", is_k_full = ", is_k_full,
", max_shared_mem = ", max_shared_mem);
int num_threads = th_config.num_threads;
thread_k = th_config.thread_k;
thread_n = th_config.thread_n;
int num_threads = exec_cfg.tb_cfg.num_threads;
thread_k = exec_cfg.tb_cfg.thread_k;
thread_n = exec_cfg.tb_cfg.thread_n;
int thread_k_blocks = thread_k / 16;
int thread_n_blocks = thread_n / 16;
@ -1590,11 +1824,6 @@ void marlin_mm_moe_f16i4(const void* A, const void* B, void* C,
}
}
int max_shared_mem = 0;
cudaDeviceGetAttribute(&max_shared_mem,
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
TORCH_CHECK(max_shared_mem > 0);
int tot_m = prob_m;
const int* topk_ids_ptr = (const int*)topk_ids;
@ -1611,10 +1840,13 @@ void marlin_mm_moe_f16i4(const void* A, const void* B, void* C,
has_act_order = false;
}
int pack_factor = 32 / q_type.size_bits();
for (int expert_idx = 0; expert_idx < num_experts; ++expert_idx) {
const int4* A_ptr = (const int4*)A;
int4* a_tmp_ptr = (int4*)a_tmp;
const int4* B_ptr = (const int4*)B + (prob_n * prob_k / 32) * expert_idx;
const int4* B_ptr =
(const int4*)B + (prob_n * prob_k / (pack_factor * 4)) * expert_idx;
int4* C_ptr = (int4*)C;
const float* topk_weights_ptr = (const float*)topk_weights;
const int* sorted_ids_ptr = (const int*)sorted_ids;
@ -1636,19 +1868,22 @@ void marlin_mm_moe_f16i4(const void* A, const void* B, void* C,
A_ptr = a_tmp_ptr;
}
int max_m_blocks = ceildiv(tot_m, 16);
for (int m_block = 0; m_block < max_m_blocks; m_block += 16) {
// Define kernel configurations
int tot_m_blocks = ceildiv(tot_m, 16);
for (int m_block = 0; m_block < tot_m_blocks;
m_block += 4 * exec_cfg.max_m_blocks) {
// make it max possible value
int thread_m_blocks = 4;
int thread_m_blocks = exec_cfg.max_m_blocks;
if (false) {
}
CALL_IF_MOE(16, 4, 256)
CALL_IF_MOE(8, 8, 256)
CALL_IF_MOE(8, 4, 128)
CALL_IF_MOE(4, 8, 128)
CALL_IF_MOE(vllm::kU4B8, 16, 4, 256)
CALL_IF_MOE(vllm::kU4B8, 8, 8, 256)
CALL_IF_MOE(vllm::kU4B8, 8, 4, 128)
CALL_IF_MOE(vllm::kU4B8, 4, 8, 128)
CALL_IF_MOE(vllm::kU8B128, 16, 4, 256)
CALL_IF_MOE(vllm::kU8B128, 8, 8, 256)
CALL_IF_MOE(vllm::kU8B128, 8, 4, 128)
CALL_IF_MOE(vllm::kU8B128, 4, 8, 128)
else {
TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " +
str(prob_n) + ", " + str(prob_k) + "]" +
@ -1670,9 +1905,15 @@ torch::Tensor marlin_gemm_moe(
const torch::Tensor& sorted_ids, const torch::Tensor& topk_weights,
const torch::Tensor& topk_ids, const torch::Tensor& b_scales,
const torch::Tensor& g_idx, const torch::Tensor& perm,
torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k,
bool is_k_full, int64_t num_experts, int64_t topk, int64_t moe_block_size,
torch::Tensor& workspace, vllm::ScalarTypeTorchPtr const& b_q_type,
int64_t size_m, int64_t size_n, int64_t size_k, bool is_k_full,
int64_t num_experts, int64_t topk, int64_t moe_block_size,
bool replicate_input, bool apply_weights) {
TORCH_CHECK(*b_q_type == vllm::kU4B8 || *b_q_type == vllm::kU8B128,
"b_q_type must be uint4b8 or uint8b128. Got = ", b_q_type->str());
int pack_factor = 32 / b_q_type->size_bits();
int max_par = 4;
int dev = a.get_device();
@ -1733,8 +1974,8 @@ torch::Tensor marlin_gemm_moe(
topk_weights.data_ptr(), topk_ids.data_ptr(), b_scales.data_ptr(),
g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr(),
expert_offsets.data_ptr(), size_m, size_n, size_k, workspace.data_ptr(),
has_act_order, is_k_full, num_groups, group_size, num_experts, topk,
moe_block_size, dev, at::cuda::getCurrentCUDAStream(dev), thread_k,
*b_q_type, has_act_order, is_k_full, num_groups, group_size, num_experts,
topk, moe_block_size, dev, at::cuda::getCurrentCUDAStream(dev), thread_k,
thread_n, sms, max_par, replicate_input, apply_weights);
return c;
}

View File

@ -2,11 +2,14 @@
#include <torch/all.h>
#include "core/scalar_type.hpp"
torch::Tensor marlin_gemm_moe(
const torch::Tensor& a, const torch::Tensor& b_q_weights,
const torch::Tensor& sorted_ids, const torch::Tensor& topk_weights,
const torch::Tensor& topk_ids, const torch::Tensor& b_scales,
const torch::Tensor& g_idx, const torch::Tensor& perm,
torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k,
bool is_k_full, int64_t num_experts, int64_t topk, int64_t moe_block_size,
torch::Tensor& workspace, vllm::ScalarTypeTorchPtr const& b_q_type,
int64_t size_m, int64_t size_n, int64_t size_k, bool is_k_full,
int64_t num_experts, int64_t topk, int64_t moe_block_size,
bool replicate_input, bool apply_weights);

View File

@ -13,9 +13,11 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
m.def(
"marlin_gemm_moe(Tensor! a, Tensor! b_q_weights, Tensor! sorted_ids, "
"Tensor! topk_weights, Tensor! topk_ids, Tensor! b_scales, Tensor! "
"g_idx, Tensor! perm, Tensor! workspace, int size_m, int size_n, int "
"size_k, bool is_k_full, int num_experts, int topk, int moe_block_size, "
"bool replicate_input, bool apply_weights) -> Tensor");
"g_idx, Tensor! perm, Tensor! workspace, "
"__torch__.torch.classes._core_C.ScalarType b_q_type, int size_m, "
"int size_n, int size_k, bool is_k_full, int num_experts, int topk, "
"int moe_block_size, bool replicate_input, bool apply_weights)"
" -> Tensor");
m.impl("marlin_gemm_moe", torch::kCUDA, &marlin_gemm_moe);
#endif
}

View File

@ -140,6 +140,7 @@ def compute_max_diff(output, output_ref):
@pytest.mark.parametrize("topk", [2, 6])
@pytest.mark.parametrize("group_size", [-1, 32, 64, 128])
@pytest.mark.parametrize("act_order", [True, False])
@pytest.mark.parametrize("num_bits", [4, 8])
def test_fused_marlin_moe(
m: int,
n: int,
@ -148,6 +149,7 @@ def test_fused_marlin_moe(
topk: int,
group_size: int,
act_order: bool,
num_bits: int,
):
torch.manual_seed(7)
@ -161,13 +163,12 @@ def test_fused_marlin_moe(
if group_size in (k, n):
return
quant_type = scalar_types.uint4b8
quant_type = (scalar_types.uint4b8
if num_bits == 4 else scalar_types.uint8b128)
dtype = torch.float16
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
for i in range(w2.shape[0]):
w2[0] = torch.eye(k, n, device="cuda", dtype=dtype)
w_ref1_l = []
qweight1_l = []
@ -240,6 +241,7 @@ def test_fused_marlin_moe(
topk_ids,
w1_scale=scales1,
w2_scale=scales2,
num_bits=num_bits,
)
assert compute_max_diff(marlin_output, triton_output) < 4e-2
@ -254,7 +256,8 @@ def test_fused_marlin_moe(
@pytest.mark.parametrize("topk", [2, 6])
@pytest.mark.parametrize("group_size", [-1, 32, 64, 128])
@pytest.mark.parametrize("act_order", [True, False])
def test_marlin_moe_mmm(
@pytest.mark.parametrize("num_bits", [4, 8])
def test_single_marlin_moe_multiply(
m: int,
n: int,
k: int,
@ -262,6 +265,7 @@ def test_marlin_moe_mmm(
topk: int,
group_size: int,
act_order: bool,
num_bits: int,
):
if topk > e:
return
@ -273,7 +277,8 @@ def test_marlin_moe_mmm(
if group_size == k:
return
quant_type = scalar_types.uint4b8
quant_type = (scalar_types.uint4b8
if num_bits == 4 else scalar_types.uint8b128)
dtype = torch.float16
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w = torch.randn((e, n, k), device="cuda", dtype=dtype) / 10
@ -308,7 +313,8 @@ def test_marlin_moe_mmm(
g_idx,
sort_indices,
topk,
renormalize=False)
renormalize=False,
num_bits=num_bits)
torch_output = torch_moe_single(a, w_ref.transpose(1, 2), score, topk)
assert compute_max_diff(marlin_output, torch_output) < 1e-2

View File

@ -1,3 +1,4 @@
compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W4A16-quantized, main
compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W4A16-channel-quantized, main
gptq_marlin, TheBloke/Mixtral-8x7B-v0.1-GPTQ, main
compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W8A16-quantized, main
gptq_marlin, TheBloke/Mixtral-8x7B-v0.1-GPTQ, main

0
tests/weight_loading/run_model_weight_loading_test.sh Normal file → Executable file
View File

View File

@ -559,7 +559,7 @@ def gptq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
num_bits: int) -> torch.Tensor:
num_experts = b_q_weight.shape[0]
assert size_k % 16 == 0
output = torch.empty((num_experts, size_k // 16, size_n * 2),
output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
device=b_q_weight.device,
dtype=b_q_weight.dtype)
for e in range(num_experts):

View File

@ -7,18 +7,21 @@ import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.fused_moe.fused_moe import (
fused_topk, moe_align_block_size, try_get_optimal_moe_config)
from vllm.scalar_type import scalar_types
def single_marlin_moe(
hidden_states: torch.Tensor,
w: torch.Tensor,
scales: torch.Tensor,
gating_output: torch.Tensor,
g_idx: torch.Tensor,
perm: torch.Tensor,
topk: int,
renormalize: bool,
override_config: Optional[Dict[str, Any]] = None) -> torch.Tensor:
hidden_states: torch.Tensor,
w: torch.Tensor,
scales: torch.Tensor,
gating_output: torch.Tensor,
g_idx: torch.Tensor,
perm: torch.Tensor,
topk: int,
renormalize: bool,
override_config: Optional[Dict[str, Any]] = None,
num_bits: int = 8,
) -> torch.Tensor:
"""
This function computes the multiplication of hidden_states with expert
weights used in Marlin MoE, using weights w and top-k gating mechanism.
@ -36,6 +39,7 @@ def single_marlin_moe(
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
- override_config (Optional[Dict[str, Any]]): Optional override
for the kernel configuration.
- num_bits (bool): The number of bits in expert weights quantization.
Returns:
- torch.Tensor: The output tensor after applying the MoE layer.
@ -48,10 +52,11 @@ def single_marlin_moe(
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
assert w.is_contiguous(), "Expert weights must be contiguous"
assert hidden_states.dtype == torch.float16
assert num_bits in [4, 8]
M, K = hidden_states.shape
E = w.shape[0]
N = w.shape[2] // 2
N = w.shape[2] // (num_bits // 2)
topk_weights, topk_ids = fused_topk(hidden_states, gating_output, topk,
renormalize)
@ -76,10 +81,13 @@ def single_marlin_moe(
device="cuda",
requires_grad=False)
scalar_type = (scalar_types.uint4b8
if num_bits == 4 else scalar_types.uint8b128)
intermediate_cache = torch.ops._moe_C.marlin_gemm_moe(
hidden_states, w, sorted_token_ids, topk_weights, topk_ids, scales,
g_idx, perm, workspace, M, N, K, True, E, topk, block_size_m, True,
False)
g_idx, perm, workspace, scalar_type, M, N, K, True, E, topk,
block_size_m, True, False)
return torch.sum(intermediate_cache.view(*intermediate_cache.shape), dim=1)
@ -98,6 +106,7 @@ def fused_marlin_moe(
override_config: Optional[Dict[str, Any]] = None,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
num_bits: int = 8,
) -> torch.Tensor:
"""
This function computes a Mixture of Experts (MoE) layer using two sets of
@ -122,6 +131,7 @@ def fused_marlin_moe(
w1.
- w2_scale (Optional[torch.Tensor]): Optional scale to be used for
w2.
- num_bits (bool): The number of bits in expert weights quantization.
Returns:
- torch.Tensor: The output tensor after applying the MoE layer.
@ -131,13 +141,14 @@ def fused_marlin_moe(
0], "Number of tokens mismatch"
assert hidden_states.shape[
1] == w1.shape[1] * 16, "Hidden size mismatch w1"
assert hidden_states.shape[
1] == w2.shape[2] // 2, "Hidden size mismatch w2"
assert hidden_states.shape[1] == w2.shape[2] // (
num_bits // 2), "Hidden size mismatch w2"
assert gating_output.shape[1] == w1.shape[0], "Number of experts mismatch"
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
assert w1.is_contiguous(), "Expert weights1 must be contiguous"
assert w2.is_contiguous(), "Expert weights2 must be contiguous"
assert hidden_states.dtype == torch.float16
assert num_bits in [4, 8]
M, K = hidden_states.shape
E = w1.shape[0]
@ -165,6 +176,9 @@ def fused_marlin_moe(
device="cuda",
requires_grad=False)
scalar_type = (scalar_types.uint4b8
if num_bits == 4 else scalar_types.uint8b128)
intermediate_cache2 = torch.empty(
(M * topk_ids.shape[1], N),
device=hidden_states.device,
@ -181,6 +195,7 @@ def fused_marlin_moe(
g_idx1,
perm1,
workspace,
scalar_type,
M,
2 * N,
K,
@ -204,6 +219,7 @@ def fused_marlin_moe(
g_idx2,
perm2,
workspace,
scalar_type,
M,
K,
N,

View File

@ -445,7 +445,7 @@ def grouped_topk(hidden_states: torch.Tensor,
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_ids.to(torch.int32)
return topk_weights.to(torch.float32), topk_ids.to(torch.int32)
def get_config_dtype_str(dtype: torch.dtype,

View File

@ -6,6 +6,8 @@ import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.fused_moe import FusedMoE, FusedMoEMethodBase
from vllm.model_executor.layers.quantization.compressed_tensors.schemes import (
WNA16_SUPPORTED_BITS)
from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
CompressionFormat)
from vllm.model_executor.utils import set_weight_attrs
@ -38,10 +40,11 @@ class CompressedTensorsMoEMethod(FusedMoEMethodBase):
if not (self.quant_config.quant_format
== CompressionFormat.pack_quantized.value
and self.num_bits == 4):
and self.num_bits in WNA16_SUPPORTED_BITS):
raise ValueError("For Fused MoE layers, only ",
f"{CompressionFormat.pack_quantized.value} ",
"is supported for 4 bits")
"is supported for the following bits: ",
f"{WNA16_SUPPORTED_BITS}")
def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size: int,
@ -292,4 +295,5 @@ class CompressedTensorsMoEMethod(FusedMoEMethodBase):
topk_ids,
w1_scale=layer.w13_weight_scale,
w2_scale=layer.w2_weight_scale,
num_bits=self.num_bits,
)

View File

@ -611,4 +611,5 @@ class GPTQMarlinMoEMethod(FusedMoEMethodBase):
topk_ids,
w1_scale=layer.w13_scales,
w2_scale=layer.w2_scales,
num_bits=self.quant_config.quant_type.size_bits,
).to(orig_dtype)

View File

@ -23,13 +23,7 @@ def get_model_architecture(
architectures = getattr(model_config.hf_config, "architectures", [])
# Special handling for quantized Mixtral.
# FIXME(woosuk): This is a temporary hack.
mixtral_supported = ["fp8", "compressed-tensors"]
# for gptq_marlin, only run fused MoE for int4
if model_config.quantization == "gptq_marlin":
hf_quant_config = getattr(model_config.hf_config,
"quantization_config", None)
if hf_quant_config and hf_quant_config.get("bits") == 4:
mixtral_supported.append("gptq_marlin")
mixtral_supported = ["fp8", "compressed-tensors", "gptq_marlin"]
if (model_config.quantization is not None
and model_config.quantization not in mixtral_supported