[Frontend] Online Pooling API (#11457)

Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
Cyrus Leung 2024-12-24 17:54:30 +08:00 committed by GitHub
parent 4f074fbf53
commit 9edca6bf8f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 808 additions and 156 deletions

View File

@ -120,19 +120,7 @@ outputs = llm.chat(conversation, chat_template=custom_template)
## Online Inference ## Online Inference
Our [OpenAI Compatible Server](../serving/openai_compatible_server) can be used for online inference. Our [OpenAI Compatible Server](../serving/openai_compatible_server) provides endpoints that correspond to the offline APIs:
Please click on the above link for more details on how to launch the server.
### Completions API - [Completions API](#completions-api) is similar to `LLM.generate` but only accepts text.
- [Chat API](#chat-api) is similar to `LLM.chat`, accepting both text and [multi-modal inputs](#multimodal-inputs) for models with a chat template.
Our Completions API is similar to `LLM.generate` but only accepts text.
It is compatible with [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions)
so that you can use OpenAI client to interact with it.
A code example can be found in [examples/openai_completion_client.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_completion_client.py).
### Chat API
Our Chat API is similar to `LLM.chat`, accepting both text and [multi-modal inputs](#multimodal-inputs).
It is compatible with [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat)
so that you can use OpenAI client to interact with it.
A code example can be found in [examples/openai_chat_completion_client.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_chat_completion_client.py).

View File

@ -106,22 +106,8 @@ A code example can be found in [examples/offline_inference_scoring.py](https://g
## Online Inference ## Online Inference
Our [OpenAI Compatible Server](../serving/openai_compatible_server.md) can be used for online inference. Our [OpenAI Compatible Server](../serving/openai_compatible_server.md) provides endpoints that correspond to the offline APIs:
Please click on the above link for more details on how to launch the server.
### Embeddings API - [Pooling API](#pooling-api) is similar to `LLM.encode`, being applicable to all types of pooling models.
- [Embeddings API](#embeddings-api) is similar to `LLM.embed`, accepting both text and [multi-modal inputs](#multimodal-inputs) for embedding models.
Our Embeddings API is similar to `LLM.embed`, accepting both text and [multi-modal inputs](#multimodal-inputs). - [Score API](#score-api) is similar to `LLM.score` for cross-encoder models.
The text-only API is compatible with [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings)
so that you can use OpenAI client to interact with it.
A code example can be found in [examples/openai_embedding_client.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_embedding_client.py).
The multi-modal API is an extension of the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings)
that incorporates [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat),
so it is not part of the OpenAI standard. Please see [](#multimodal-inputs) for more details on how to use it.
### Score API
Our Score API is similar to `LLM.score`.
Please see [this page](#score-api) for more details on how to use it.

View File

@ -42,6 +42,8 @@ In addition, we have the following custom APIs:
- [Tokenizer API](#tokenizer-api) (`/tokenize`, `/detokenize`) - [Tokenizer API](#tokenizer-api) (`/tokenize`, `/detokenize`)
- Applicable to any model with a tokenizer. - Applicable to any model with a tokenizer.
- [Pooling API](#pooling-api) (`/pooling`)
- Applicable to all [pooling models](../models/pooling_models.md).
- [Score API](#score-api) (`/score`) - [Score API](#score-api) (`/score`)
- Only applicable to [cross-encoder models](../models/pooling_models.md) (`--task score`). - Only applicable to [cross-encoder models](../models/pooling_models.md) (`--task score`).
@ -179,7 +181,12 @@ The order of priorities is `command line > config file values > defaults`.
(completions-api)= (completions-api)=
### Completions API ### Completions API
Refer to [OpenAI's API reference](https://platform.openai.com/docs/api-reference/completions) for more details. Our Completions API is compatible with [OpenAI's Completions API](https://platform.openai.com/docs/api-reference/completions);
you can use the [official OpenAI Python client](https://github.com/openai/openai-python) to interact with it.
#### Code example
See [examples/openai_completion_client.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_completion_client.py).
#### Extra parameters #### Extra parameters
@ -200,15 +207,20 @@ The following extra parameters are supported:
``` ```
(chat-api)= (chat-api)=
### Chat Completions API ### Chat API
Refer to [OpenAI's API reference](https://platform.openai.com/docs/api-reference/chat) for more details. Our Chat API is compatible with [OpenAI's Chat Completions API](https://platform.openai.com/docs/api-reference/chat);
you can use the [official OpenAI Python client](https://github.com/openai/openai-python) to interact with it.
We support both [Vision](https://platform.openai.com/docs/guides/vision)- and We support both [Vision](https://platform.openai.com/docs/guides/vision)- and
[Audio](https://platform.openai.com/docs/guides/audio?audio-generation-quickstart-example=audio-in)-related parameters; [Audio](https://platform.openai.com/docs/guides/audio?audio-generation-quickstart-example=audio-in)-related parameters;
see our [Multimodal Inputs](../usage/multimodal_inputs.md) guide for more information. see our [Multimodal Inputs](../usage/multimodal_inputs.md) guide for more information.
- *Note: `image_url.detail` parameter is not supported.* - *Note: `image_url.detail` parameter is not supported.*
#### Code example
See [examples/openai_chat_completion_client.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_chat_completion_client.py).
#### Extra parameters #### Extra parameters
The following [sampling parameters (click through to see documentation)](../dev/sampling_params.md) are supported. The following [sampling parameters (click through to see documentation)](../dev/sampling_params.md) are supported.
@ -230,15 +242,20 @@ The following extra parameters are supported:
(embeddings-api)= (embeddings-api)=
### Embeddings API ### Embeddings API
Refer to [OpenAI's API reference](https://platform.openai.com/docs/api-reference/embeddings) for more details. Our Embeddings API is compatible with [OpenAI's Embeddings API](https://platform.openai.com/docs/api-reference/embeddings);
you can use the [official OpenAI Python client](https://github.com/openai/openai-python) to interact with it.
If the model has a [chat template](#chat-template), you can replace `inputs` with a list of `messages` (same schema as [Chat Completions API](#chat-api)) If the model has a [chat template](#chat-template), you can replace `inputs` with a list of `messages` (same schema as [Chat API](#chat-api))
which will be treated as a single prompt to the model. which will be treated as a single prompt to the model.
```{tip} ```{tip}
This enables multi-modal inputs to be passed to embedding models, see [this page](../usage/multimodal_inputs.md) for details. This enables multi-modal inputs to be passed to embedding models, see [this page](#multimodal-inputs) for details.
``` ```
#### Code example
See [examples/openai_embedding_client.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_embedding_client.py).
#### Extra parameters #### Extra parameters
The following [pooling parameters (click through to see documentation)](../dev/pooling_params.md) are supported. The following [pooling parameters (click through to see documentation)](../dev/pooling_params.md) are supported.
@ -268,20 +285,35 @@ For chat-like input (i.e. if `messages` is passed), these extra parameters are s
(tokenizer-api)= (tokenizer-api)=
### Tokenizer API ### Tokenizer API
The Tokenizer API is a simple wrapper over [HuggingFace-style tokenizers](https://huggingface.co/docs/transformers/en/main_classes/tokenizer). Our Tokenizer API is a simple wrapper over [HuggingFace-style tokenizers](https://huggingface.co/docs/transformers/en/main_classes/tokenizer).
It consists of two endpoints: It consists of two endpoints:
- `/tokenize` corresponds to calling `tokenizer.encode()`. - `/tokenize` corresponds to calling `tokenizer.encode()`.
- `/detokenize` corresponds to calling `tokenizer.decode()`. - `/detokenize` corresponds to calling `tokenizer.decode()`.
(pooling-api)=
### Pooling API
Our Pooling API encodes input prompts using a [pooling model](../models/pooling_models.md) and returns the corresponding hidden states.
The input format is the same as [Embeddings API](#embeddings-api), but the output data can contain an arbitrary nested list, not just a 1-D list of floats.
#### Code example
See [examples/openai_pooling_client.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_pooling_client.py).
(score-api)= (score-api)=
### Score API ### Score API
The Score API applies a cross-encoder model to predict scores for sentence pairs. Our Score API applies a cross-encoder model to predict scores for sentence pairs.
Usually, the score for a sentence pair refers to the similarity between two sentences, on a scale of 0 to 1. Usually, the score for a sentence pair refers to the similarity between two sentences, on a scale of 0 to 1.
You can find the documentation for these kind of models at [sbert.net](https://www.sbert.net/docs/package_reference/cross_encoder/cross_encoder.html). You can find the documentation for these kind of models at [sbert.net](https://www.sbert.net/docs/package_reference/cross_encoder/cross_encoder.html).
#### Code example
See [examples/openai_cross_encoder_score.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_cross_encoder_score.py).
#### Single inference #### Single inference
You can pass a string to both `text_1` and `text_2`, forming a single sentence pair. You can pass a string to both `text_1` and `text_2`, forming a single sentence pair.

View File

@ -20,9 +20,9 @@ if __name__ == "__main__":
parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000) parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--model", type=str, default="BAAI/bge-reranker-v2-m3") parser.add_argument("--model", type=str, default="BAAI/bge-reranker-v2-m3")
args = parser.parse_args() args = parser.parse_args()
api_url = f"http://{args.host}:{args.port}/score" api_url = f"http://{args.host}:{args.port}/score"
model_name = args.model model_name = args.model
text_1 = "What is the capital of Brazil?" text_1 = "What is the capital of Brazil?"

View File

@ -0,0 +1,51 @@
"""
Example online usage of Pooling API.
Run `vllm serve <model> --task <embed|classify|reward|score>`
to start up the server in vLLM.
"""
import argparse
import pprint
import requests
def post_http_request(prompt: dict, api_url: str) -> requests.Response:
headers = {"User-Agent": "Test Client"}
response = requests.post(api_url, headers=headers, json=prompt)
return response
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--model",
type=str,
default="jason9693/Qwen2.5-1.5B-apeach")
args = parser.parse_args()
api_url = f"http://{args.host}:{args.port}/pooling"
model_name = args.model
# Input like Completions API
prompt = {"model": model_name, "input": "vLLM is great!"}
pooling_response = post_http_request(prompt=prompt, api_url=api_url)
print("Pooling Response:")
pprint.pprint(pooling_response.json())
# Input like Chat API
prompt = {
"model":
model_name,
"messages": [{
"role": "user",
"content": [{
"type": "text",
"text": "vLLM is great!"
}],
}]
}
pooling_response = post_http_request(prompt=prompt, api_url=api_url)
print("Pooling Response:")
pprint.pprint(pooling_response.json())

View File

@ -6,6 +6,7 @@ import pytest
import pytest_asyncio import pytest_asyncio
import requests import requests
from vllm.entrypoints.openai.protocol import EmbeddingResponse
from vllm.transformers_utils.tokenizer import get_tokenizer from vllm.transformers_utils.tokenizer import get_tokenizer
from ...utils import RemoteOpenAIServer from ...utils import RemoteOpenAIServer
@ -17,6 +18,8 @@ DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' +
@pytest.fixture(scope="module") @pytest.fixture(scope="module")
def server(): def server():
args = [ args = [
"--task",
"embed",
# use half precision for speed and memory savings in CI environment # use half precision for speed and memory savings in CI environment
"--dtype", "--dtype",
"bfloat16", "bfloat16",
@ -45,11 +48,14 @@ async def test_single_embedding(client: openai.AsyncOpenAI, model_name: str):
] ]
# test single embedding # test single embedding
embeddings = await client.embeddings.create( embedding_response = await client.embeddings.create(
model=model_name, model=model_name,
input=input_texts, input=input_texts,
encoding_format="float", encoding_format="float",
) )
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None assert embeddings.id is not None
assert len(embeddings.data) == 1 assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096 assert len(embeddings.data[0].embedding) == 4096
@ -59,11 +65,14 @@ async def test_single_embedding(client: openai.AsyncOpenAI, model_name: str):
# test using token IDs # test using token IDs
input_tokens = [1, 1, 1, 1, 1] input_tokens = [1, 1, 1, 1, 1]
embeddings = await client.embeddings.create( embedding_response = await client.embeddings.create(
model=model_name, model=model_name,
input=input_tokens, input=input_tokens,
encoding_format="float", encoding_format="float",
) )
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None assert embeddings.id is not None
assert len(embeddings.data) == 1 assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096 assert len(embeddings.data[0].embedding) == 4096
@ -80,11 +89,14 @@ async def test_batch_embedding(client: openai.AsyncOpenAI, model_name: str):
"The cat sat on the mat.", "A feline was resting on a rug.", "The cat sat on the mat.", "A feline was resting on a rug.",
"Stars twinkle brightly in the night sky." "Stars twinkle brightly in the night sky."
] ]
embeddings = await client.embeddings.create( embedding_response = await client.embeddings.create(
model=model_name, model=model_name,
input=input_texts, input=input_texts,
encoding_format="float", encoding_format="float",
) )
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None assert embeddings.id is not None
assert len(embeddings.data) == 3 assert len(embeddings.data) == 3
assert len(embeddings.data[0].embedding) == 4096 assert len(embeddings.data[0].embedding) == 4096
@ -95,11 +107,14 @@ async def test_batch_embedding(client: openai.AsyncOpenAI, model_name: str):
# test List[List[int]] # test List[List[int]]
input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24], input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24],
[25, 32, 64, 77]] [25, 32, 64, 77]]
embeddings = await client.embeddings.create( embedding_response = await client.embeddings.create(
model=model_name, model=model_name,
input=input_tokens, input=input_tokens,
encoding_format="float", encoding_format="float",
) )
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None assert embeddings.id is not None
assert len(embeddings.data) == 4 assert len(embeddings.data) == 4
assert len(embeddings.data[0].embedding) == 4096 assert len(embeddings.data[0].embedding) == 4096
@ -124,14 +139,16 @@ async def test_conversation_embedding(server: RemoteOpenAIServer,
"content": "Stars twinkle brightly in the night sky.", "content": "Stars twinkle brightly in the night sky.",
}] }]
chat_response = requests.post(server.url_for("v1/embeddings"), chat_response = requests.post(
json={ server.url_for("v1/embeddings"),
"model": model_name, json={
"messages": messages, "model": model_name,
"encoding_format": "float", "messages": messages,
}) "encoding_format": "float",
},
)
chat_response.raise_for_status() chat_response.raise_for_status()
chat_embeddings = chat_response.json() chat_embeddings = EmbeddingResponse.model_validate(chat_response.json())
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast") tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
prompt = tokenizer.apply_chat_template( prompt = tokenizer.apply_chat_template(
@ -148,13 +165,15 @@ async def test_conversation_embedding(server: RemoteOpenAIServer,
# To be consistent with chat # To be consistent with chat
extra_body={"add_special_tokens": False}, extra_body={"add_special_tokens": False},
) )
completion_embeddings = completion_response.model_dump(mode="json") completion_embeddings = EmbeddingResponse.model_validate(
completion_response.model_dump(mode="json"))
assert chat_embeddings.pop("id") is not None assert chat_embeddings.id is not None
assert completion_embeddings.pop("id") is not None assert completion_embeddings.id is not None
assert chat_embeddings.pop("created") <= completion_embeddings.pop( assert chat_embeddings.created <= completion_embeddings.created
"created") assert chat_embeddings.model_dump(
assert chat_embeddings == completion_embeddings exclude={"id", "created"}) == (completion_embeddings.model_dump(
exclude={"id", "created"}))
@pytest.mark.asyncio @pytest.mark.asyncio
@ -204,10 +223,13 @@ async def test_single_embedding_truncation(client: openai.AsyncOpenAI,
] ]
# test single embedding # test single embedding
embeddings = await client.embeddings.create( embedding_response = await client.embeddings.create(
model=model_name, model=model_name,
input=input_texts, input=input_texts,
extra_body={"truncate_prompt_tokens": 10}) extra_body={"truncate_prompt_tokens": 10})
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None assert embeddings.id is not None
assert len(embeddings.data) == 1 assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096 assert len(embeddings.data[0].embedding) == 4096
@ -219,10 +241,12 @@ async def test_single_embedding_truncation(client: openai.AsyncOpenAI,
1, 24428, 289, 18341, 26165, 285, 19323, 283, 289, 26789, 3871, 28728, 1, 24428, 289, 18341, 26165, 285, 19323, 283, 289, 26789, 3871, 28728,
9901, 340, 2229, 385, 340, 315, 28741, 28804, 2 9901, 340, 2229, 385, 340, 315, 28741, 28804, 2
] ]
embeddings = await client.embeddings.create( embedding_response = await client.embeddings.create(
model=model_name, model=model_name,
input=input_tokens, input=input_tokens,
extra_body={"truncate_prompt_tokens": 10}) extra_body={"truncate_prompt_tokens": 10})
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None assert embeddings.id is not None
assert len(embeddings.data) == 1 assert len(embeddings.data) == 1
@ -241,10 +265,10 @@ async def test_single_embedding_truncation_invalid(client: openai.AsyncOpenAI,
] ]
with pytest.raises(openai.BadRequestError): with pytest.raises(openai.BadRequestError):
embeddings = await client.embeddings.create( response = await client.embeddings.create(
model=model_name, model=model_name,
input=input_texts, input=input_texts,
extra_body={"truncate_prompt_tokens": 8193}) extra_body={"truncate_prompt_tokens": 8193})
assert "error" in embeddings.object assert "error" in response.object
assert "truncate_prompt_tokens value is greater than max_model_len. "\ assert "truncate_prompt_tokens value is greater than max_model_len. "\
"Please, select a smaller truncation size." in embeddings.message "Please, select a smaller truncation size." in response.message

View File

@ -0,0 +1,238 @@
import base64
import numpy as np
import pytest
import requests
from vllm.entrypoints.openai.protocol import PoolingResponse
from vllm.transformers_utils.tokenizer import get_tokenizer
from ...utils import RemoteOpenAIServer
MODEL_NAME = "jason9693/Qwen2.5-1.5B-apeach"
DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\\n'}}{% endfor %}""" # noqa: E501
@pytest.fixture(scope="module")
def server():
args = [
"--task",
"classify",
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--enforce-eager",
"--max-model-len",
"8192",
"--chat-template",
DUMMY_CHAT_TEMPLATE,
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_pooling(server: RemoteOpenAIServer, model_name: str):
input_texts = [
"The chef prepared a delicious meal.",
]
# test single pooling
response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"input": input_texts,
"encoding_format": "float"
},
)
response.raise_for_status()
poolings = PoolingResponse.model_validate(response.json())
assert poolings.id is not None
assert len(poolings.data) == 1
assert len(poolings.data[0].data) == 2
assert poolings.usage.completion_tokens == 0
assert poolings.usage.prompt_tokens == 7
assert poolings.usage.total_tokens == 7
# test using token IDs
input_tokens = [1, 1, 1, 1, 1]
response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"input": input_tokens,
"encoding_format": "float"
},
)
response.raise_for_status()
poolings = PoolingResponse.model_validate(response.json())
assert poolings.id is not None
assert len(poolings.data) == 1
assert len(poolings.data[0].data) == 2
assert poolings.usage.completion_tokens == 0
assert poolings.usage.prompt_tokens == 5
assert poolings.usage.total_tokens == 5
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_pooling(server: RemoteOpenAIServer, model_name: str):
# test List[str]
input_texts = [
"The cat sat on the mat.", "A feline was resting on a rug.",
"Stars twinkle brightly in the night sky."
]
response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"input": input_texts,
"encoding_format": "float"
},
)
response.raise_for_status()
poolings = PoolingResponse.model_validate(response.json())
assert poolings.id is not None
assert len(poolings.data) == 3
assert len(poolings.data[0].data) == 2
assert poolings.usage.completion_tokens == 0
assert poolings.usage.prompt_tokens == 25
assert poolings.usage.total_tokens == 25
# test List[List[int]]
input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24],
[25, 32, 64, 77]]
response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"input": input_tokens,
"encoding_format": "float"
},
)
response.raise_for_status()
poolings = PoolingResponse.model_validate(response.json())
assert poolings.id is not None
assert len(poolings.data) == 4
assert len(poolings.data[0].data) == 2
assert poolings.usage.completion_tokens == 0
assert poolings.usage.prompt_tokens == 17
assert poolings.usage.total_tokens == 17
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_conversation_pooling(server: RemoteOpenAIServer,
model_name: str):
messages = [{
"role": "user",
"content": "The cat sat on the mat.",
}, {
"role": "assistant",
"content": "A feline was resting on a rug.",
}, {
"role": "user",
"content": "Stars twinkle brightly in the night sky.",
}]
chat_response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"messages": messages,
"encoding_format": "float",
},
)
chat_response.raise_for_status()
chat_poolings = PoolingResponse.model_validate(chat_response.json())
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
prompt = tokenizer.apply_chat_template(
messages,
chat_template=DUMMY_CHAT_TEMPLATE,
add_generation_prompt=True,
continue_final_message=False,
tokenize=False,
)
completions_response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"input": prompt,
"encoding_format": "float",
# To be consistent with chat
"add_special_tokens": False,
},
)
completions_response.raise_for_status()
completion_poolings = PoolingResponse.model_validate(
completions_response.json())
assert chat_poolings.id is not None
assert completion_poolings.id is not None
assert chat_poolings.created <= completion_poolings.created
assert chat_poolings.model_dump(
exclude={"id", "created"}) == (completion_poolings.model_dump(
exclude={"id", "created"}))
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_base64_pooling(server: RemoteOpenAIServer,
model_name: str):
input_texts = [
"Hello my name is",
"The best thing about vLLM is that it supports many different models"
]
float_response = requests.post(
server.url_for("pooling"),
json={
"input": input_texts,
"model": model_name,
"encoding_format": "float",
},
)
float_response.raise_for_status()
responses_float = PoolingResponse.model_validate(float_response.json())
base64_response = requests.post(
server.url_for("pooling"),
json={
"input": input_texts,
"model": model_name,
"encoding_format": "base64",
},
)
base64_response.raise_for_status()
responses_base64 = PoolingResponse.model_validate(base64_response.json())
decoded_responses_base64_data = []
for data in responses_base64.data:
decoded_responses_base64_data.append(
np.frombuffer(base64.b64decode(data.data),
dtype="float32").tolist())
assert responses_float.data[0].data == decoded_responses_base64_data[0]
assert responses_float.data[1].data == decoded_responses_base64_data[1]
# Default response is float32 decoded from base64 by OpenAI Client
default_response = requests.post(
server.url_for("pooling"),
json={
"input": input_texts,
"model": model_name,
},
)
default_response.raise_for_status()
responses_default = PoolingResponse.model_validate(default_response.json())
assert responses_float.data[0].data == responses_default.data[0].data
assert responses_float.data[1].data == responses_default.data[1].data

View File

@ -1,9 +1,9 @@
from typing import Dict from typing import Dict
import pytest import pytest
import pytest_asyncio
import requests import requests
from vllm.entrypoints.openai.protocol import EmbeddingResponse
from vllm.multimodal.utils import encode_image_base64, fetch_image from vllm.multimodal.utils import encode_image_base64, fetch_image
from ...utils import VLLM_PATH, RemoteOpenAIServer from ...utils import VLLM_PATH, RemoteOpenAIServer
@ -46,12 +46,6 @@ def server():
yield remote_server yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def base64_encoded_image() -> Dict[str, str]: def base64_encoded_image() -> Dict[str, str]:
return { return {
@ -82,18 +76,20 @@ async def test_image_embedding(server: RemoteOpenAIServer, model_name: str,
], ],
}] }]
response = requests.post(server.url_for("v1/embeddings"), response = requests.post(
json={ server.url_for("v1/embeddings"),
"model": model_name, json={
"messages": messages, "model": model_name,
"encoding_format": "float" "messages": messages,
}) "encoding_format": "float"
},
)
response.raise_for_status() response.raise_for_status()
embeddings = EmbeddingResponse.model_validate(response.json())
embeddings = response.json() assert embeddings.id is not None
assert embeddings["id"] is not None assert len(embeddings.data) == 1
assert len(embeddings["data"]) == 1 assert len(embeddings.data[0].embedding) == 3072
assert len(embeddings["data"][0]["embedding"]) == 3072 assert embeddings.usage.completion_tokens == 0
assert embeddings["usage"]["completion_tokens"] == 0 assert embeddings.usage.prompt_tokens == 765
assert embeddings["usage"]["prompt_tokens"] == 765 assert embeddings.usage.total_tokens == 765
assert embeddings["usage"]["total_tokens"] == 765

View File

@ -45,8 +45,11 @@ from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
DetokenizeRequest, DetokenizeRequest,
DetokenizeResponse, DetokenizeResponse,
EmbeddingRequest, EmbeddingRequest,
EmbeddingResponse, ErrorResponse, EmbeddingResponse,
EmbeddingResponseData,
ErrorResponse,
LoadLoraAdapterRequest, LoadLoraAdapterRequest,
PoolingRequest, PoolingResponse,
ScoreRequest, ScoreResponse, ScoreRequest, ScoreResponse,
TokenizeRequest, TokenizeRequest,
TokenizeResponse, TokenizeResponse,
@ -56,6 +59,7 @@ from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
from vllm.entrypoints.openai.serving_engine import BaseModelPath, OpenAIServing from vllm.entrypoints.openai.serving_engine import BaseModelPath, OpenAIServing
from vllm.entrypoints.openai.serving_pooling import OpenAIServingPooling
from vllm.entrypoints.openai.serving_score import OpenAIServingScores from vllm.entrypoints.openai.serving_score import OpenAIServingScores
from vllm.entrypoints.openai.serving_tokenization import ( from vllm.entrypoints.openai.serving_tokenization import (
OpenAIServingTokenization) OpenAIServingTokenization)
@ -284,6 +288,10 @@ def completion(request: Request) -> Optional[OpenAIServingCompletion]:
return request.app.state.openai_serving_completion return request.app.state.openai_serving_completion
def pooling(request: Request) -> Optional[OpenAIServingPooling]:
return request.app.state.openai_serving_pooling
def embedding(request: Request) -> Optional[OpenAIServingEmbedding]: def embedding(request: Request) -> Optional[OpenAIServingEmbedding]:
return request.app.state.openai_serving_embedding return request.app.state.openai_serving_embedding
@ -395,10 +403,36 @@ async def create_completion(request: CompletionRequest, raw_request: Request):
async def create_embedding(request: EmbeddingRequest, raw_request: Request): async def create_embedding(request: EmbeddingRequest, raw_request: Request):
handler = embedding(raw_request) handler = embedding(raw_request)
if handler is None: if handler is None:
return base(raw_request).create_error_response( fallback_handler = pooling(raw_request)
message="The model does not support Embeddings API") if fallback_handler is None:
return base(raw_request).create_error_response(
message="The model does not support Embeddings API")
logger.warning(
"Embeddings API will become exclusive to embedding models "
"in a future release. To return the hidden states directly, "
"use the Pooling API (`/pooling`) instead.")
res = await fallback_handler.create_pooling(request, raw_request)
if isinstance(res, PoolingResponse):
generator = EmbeddingResponse(
id=res.id,
object=res.object,
created=res.created,
model=res.model,
data=[
EmbeddingResponseData(
index=d.index,
embedding=d.data, # type: ignore
) for d in res.data
],
usage=res.usage,
)
else:
generator = res
else:
generator = await handler.create_embedding(request, raw_request)
generator = await handler.create_embedding(request, raw_request)
if isinstance(generator, ErrorResponse): if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(), return JSONResponse(content=generator.model_dump(),
status_code=generator.code) status_code=generator.code)
@ -408,6 +442,24 @@ async def create_embedding(request: EmbeddingRequest, raw_request: Request):
assert_never(generator) assert_never(generator)
@router.post("/pooling")
@with_cancellation
async def create_pooling(request: PoolingRequest, raw_request: Request):
handler = pooling(raw_request)
if handler is None:
return base(raw_request).create_error_response(
message="The model does not support Pooling API")
generator = await handler.create_pooling(request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, PoolingResponse):
return JSONResponse(content=generator.model_dump())
assert_never(generator)
@router.post("/score") @router.post("/score")
@with_cancellation @with_cancellation
async def create_score(request: ScoreRequest, raw_request: Request): async def create_score(request: ScoreRequest, raw_request: Request):
@ -605,7 +657,7 @@ def init_app_state(
request_logger=request_logger, request_logger=request_logger,
return_tokens_as_token_ids=args.return_tokens_as_token_ids, return_tokens_as_token_ids=args.return_tokens_as_token_ids,
) if model_config.runner_type == "generate" else None ) if model_config.runner_type == "generate" else None
state.openai_serving_embedding = OpenAIServingEmbedding( state.openai_serving_pooling = OpenAIServingPooling(
engine_client, engine_client,
model_config, model_config,
base_model_paths, base_model_paths,
@ -613,13 +665,20 @@ def init_app_state(
chat_template=resolved_chat_template, chat_template=resolved_chat_template,
chat_template_content_format=args.chat_template_content_format, chat_template_content_format=args.chat_template_content_format,
) if model_config.runner_type == "pooling" else None ) if model_config.runner_type == "pooling" else None
state.openai_serving_embedding = OpenAIServingEmbedding(
engine_client,
model_config,
base_model_paths,
request_logger=request_logger,
chat_template=resolved_chat_template,
chat_template_content_format=args.chat_template_content_format,
) if model_config.task == "embed" else None
state.openai_serving_scores = OpenAIServingScores( state.openai_serving_scores = OpenAIServingScores(
engine_client, engine_client,
model_config, model_config,
base_model_paths, base_model_paths,
request_logger=request_logger request_logger=request_logger
) if (model_config.runner_type == "pooling" \ ) if model_config.task == "score" else None
and model_config.is_cross_encoder) else None
state.openai_serving_tokenization = OpenAIServingTokenization( state.openai_serving_tokenization = OpenAIServingTokenization(
engine_client, engine_client,
model_config, model_config,

View File

@ -963,6 +963,10 @@ class EmbeddingChatRequest(OpenAIBaseModel):
EmbeddingRequest = Union[EmbeddingCompletionRequest, EmbeddingChatRequest] EmbeddingRequest = Union[EmbeddingCompletionRequest, EmbeddingChatRequest]
PoolingCompletionRequest = EmbeddingCompletionRequest
PoolingChatRequest = EmbeddingChatRequest
PoolingRequest = Union[PoolingCompletionRequest, PoolingChatRequest]
class ScoreRequest(OpenAIBaseModel): class ScoreRequest(OpenAIBaseModel):
model: str model: str
@ -1058,6 +1062,21 @@ class EmbeddingResponse(OpenAIBaseModel):
usage: UsageInfo usage: UsageInfo
class PoolingResponseData(OpenAIBaseModel):
index: int
object: str = "pooling"
data: Union[List[List[float]], List[float], str]
class PoolingResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"pool-{random_uuid()}")
object: str = "list"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
data: List[PoolingResponseData]
usage: UsageInfo
class ScoreResponseData(OpenAIBaseModel): class ScoreResponseData(OpenAIBaseModel):
index: int index: int
object: str = "score" object: str = "score"

View File

@ -232,7 +232,7 @@ async def main(args):
request_logger=request_logger, request_logger=request_logger,
chat_template=None, chat_template=None,
chat_template_content_format="auto", chat_template_content_format="auto",
) if model_config.runner_type == "pooling" else None ) if model_config.task == "embed" else None
tracker = BatchProgressTracker() tracker = BatchProgressTracker()
logger.info("Reading batch from %s...", args.input_file) logger.info("Reading batch from %s...", args.input_file)

View File

@ -40,36 +40,6 @@ def _get_embedding(
assert_never(encoding_format) assert_never(encoding_format)
def request_output_to_embedding_response(
final_res_batch: List[PoolingRequestOutput], request_id: str,
created_time: int, model_name: str,
encoding_format: Literal["float", "base64"]) -> EmbeddingResponse:
data: List[EmbeddingResponseData] = []
num_prompt_tokens = 0
for idx, final_res in enumerate(final_res_batch):
embedding_res = EmbeddingRequestOutput.from_base(final_res)
prompt_token_ids = final_res.prompt_token_ids
embedding = _get_embedding(embedding_res.outputs, encoding_format)
embedding_data = EmbeddingResponseData(index=idx, embedding=embedding)
data.append(embedding_data)
num_prompt_tokens += len(prompt_token_ids)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
total_tokens=num_prompt_tokens,
)
return EmbeddingResponse(
id=request_id,
created=created_time,
model=model_name,
data=data,
usage=usage,
)
class OpenAIServingEmbedding(OpenAIServing): class OpenAIServingEmbedding(OpenAIServing):
def __init__( def __init__(
@ -114,7 +84,7 @@ class OpenAIServingEmbedding(OpenAIServing):
model_name = request.model model_name = request.model
request_id = f"embd-{self._base_request_id(raw_request)}" request_id = f"embd-{self._base_request_id(raw_request)}"
created_time = int(time.monotonic()) created_time = int(time.time())
truncate_prompt_tokens = None truncate_prompt_tokens = None
@ -218,9 +188,13 @@ class OpenAIServingEmbedding(OpenAIServing):
final_res_batch_checked = cast(List[PoolingRequestOutput], final_res_batch_checked = cast(List[PoolingRequestOutput],
final_res_batch) final_res_batch)
response = request_output_to_embedding_response( response = self.request_output_to_embedding_response(
final_res_batch_checked, request_id, created_time, model_name, final_res_batch_checked,
encoding_format) request_id,
created_time,
model_name,
encoding_format,
)
except asyncio.CancelledError: except asyncio.CancelledError:
return self.create_error_response("Client disconnected") return self.create_error_response("Client disconnected")
except ValueError as e: except ValueError as e:
@ -228,3 +202,40 @@ class OpenAIServingEmbedding(OpenAIServing):
return self.create_error_response(str(e)) return self.create_error_response(str(e))
return response return response
def request_output_to_embedding_response(
self,
final_res_batch: List[PoolingRequestOutput],
request_id: str,
created_time: int,
model_name: str,
encoding_format: Literal["float", "base64"],
) -> EmbeddingResponse:
items: List[EmbeddingResponseData] = []
num_prompt_tokens = 0
for idx, final_res in enumerate(final_res_batch):
embedding_res = EmbeddingRequestOutput.from_base(final_res)
item = EmbeddingResponseData(
index=idx,
embedding=_get_embedding(embedding_res.outputs,
encoding_format),
)
prompt_token_ids = final_res.prompt_token_ids
items.append(item)
num_prompt_tokens += len(prompt_token_ids)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
total_tokens=num_prompt_tokens,
)
return EmbeddingResponse(
id=request_id,
created=created_time,
model=model_name,
data=items,
usage=usage,
)

View File

@ -0,0 +1,234 @@
import asyncio
import base64
import time
from typing import AsyncGenerator, Final, List, Literal, Optional, Union, cast
import numpy as np
from fastapi import Request
from typing_extensions import assert_never
from vllm.config import ModelConfig
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.chat_utils import ChatTemplateContentFormatOption
from vllm.entrypoints.logger import RequestLogger
from vllm.entrypoints.openai.protocol import (ErrorResponse,
PoolingChatRequest,
PoolingRequest, PoolingResponse,
PoolingResponseData, UsageInfo)
from vllm.entrypoints.openai.serving_engine import BaseModelPath, OpenAIServing
from vllm.logger import init_logger
from vllm.outputs import PoolingOutput, PoolingRequestOutput
from vllm.utils import merge_async_iterators
logger = init_logger(__name__)
def _get_data(
output: PoolingOutput,
encoding_format: Literal["float", "base64"],
) -> Union[List[float], str]:
if encoding_format == "float":
return output.data.tolist()
elif encoding_format == "base64":
# Force to use float32 for base64 encoding
# to match the OpenAI python client behavior
pooling_bytes = np.array(output.data, dtype="float32").tobytes()
return base64.b64encode(pooling_bytes).decode("utf-8")
assert_never(encoding_format)
class OpenAIServingPooling(OpenAIServing):
def __init__(
self,
engine_client: EngineClient,
model_config: ModelConfig,
base_model_paths: List[BaseModelPath],
*,
request_logger: Optional[RequestLogger],
chat_template: Optional[str],
chat_template_content_format: ChatTemplateContentFormatOption,
) -> None:
super().__init__(engine_client=engine_client,
model_config=model_config,
base_model_paths=base_model_paths,
lora_modules=None,
prompt_adapters=None,
request_logger=request_logger)
self.chat_template = chat_template
self.chat_template_content_format: Final = chat_template_content_format
async def create_pooling(
self,
request: PoolingRequest,
raw_request: Optional[Request] = None,
) -> Union[PoolingResponse, ErrorResponse]:
"""
See https://platform.openai.com/docs/api-reference/embeddings/create
for the API specification. This API mimics the OpenAI Embedding API.
"""
error_check_ret = await self._check_model(request)
if error_check_ret is not None:
return error_check_ret
encoding_format = request.encoding_format
if request.dimensions is not None:
return self.create_error_response(
"dimensions is currently not supported")
model_name = request.model
request_id = f"pool-{self._base_request_id(raw_request)}"
created_time = int(time.time())
truncate_prompt_tokens = None
if request.truncate_prompt_tokens is not None:
if request.truncate_prompt_tokens <= self.max_model_len:
truncate_prompt_tokens = request.truncate_prompt_tokens
else:
return self.create_error_response(
"truncate_prompt_tokens value is "
"greater than max_model_len."
" Please, select a smaller truncation size.")
try:
(
lora_request,
prompt_adapter_request,
) = self._maybe_get_adapters(request)
tokenizer = await self.engine_client.get_tokenizer(lora_request)
if prompt_adapter_request is not None:
raise NotImplementedError("Prompt adapter is not supported "
"for pooling models")
if isinstance(request, PoolingChatRequest):
(
_,
request_prompts,
engine_prompts,
) = await self._preprocess_chat(
request,
tokenizer,
request.messages,
chat_template=request.chat_template or self.chat_template,
chat_template_content_format=self.
chat_template_content_format,
# In pooling requests, we are not generating tokens,
# so there is no need to append extra tokens to the input
add_generation_prompt=False,
continue_final_message=False,
truncate_prompt_tokens=truncate_prompt_tokens,
add_special_tokens=request.add_special_tokens,
)
else:
(request_prompts,
engine_prompts) = await self._preprocess_completion(
request,
tokenizer,
request.input,
truncate_prompt_tokens=truncate_prompt_tokens,
add_special_tokens=request.add_special_tokens,
)
except ValueError as e:
logger.exception("Error in preprocessing prompt inputs")
return self.create_error_response(str(e))
# Schedule the request and get the result generator.
generators: List[AsyncGenerator[PoolingRequestOutput, None]] = []
try:
pooling_params = request.to_pooling_params()
for i, engine_prompt in enumerate(engine_prompts):
request_id_item = f"{request_id}-{i}"
self._log_inputs(request_id_item,
request_prompts[i],
params=pooling_params,
lora_request=lora_request,
prompt_adapter_request=prompt_adapter_request)
trace_headers = (None if raw_request is None else await
self._get_trace_headers(raw_request.headers))
generator = self.engine_client.encode(
engine_prompt,
pooling_params,
request_id_item,
lora_request=lora_request,
trace_headers=trace_headers,
priority=request.priority,
)
generators.append(generator)
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
result_generator = merge_async_iterators(*generators)
num_prompts = len(engine_prompts)
# Non-streaming response
final_res_batch: List[Optional[PoolingRequestOutput]]
final_res_batch = [None] * num_prompts
try:
async for i, res in result_generator:
final_res_batch[i] = res
assert all(final_res is not None for final_res in final_res_batch)
final_res_batch_checked = cast(List[PoolingRequestOutput],
final_res_batch)
response = self.request_output_to_pooling_response(
final_res_batch_checked,
request_id,
created_time,
model_name,
encoding_format,
)
except asyncio.CancelledError:
return self.create_error_response("Client disconnected")
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
return response
def request_output_to_pooling_response(
self,
final_res_batch: List[PoolingRequestOutput],
request_id: str,
created_time: int,
model_name: str,
encoding_format: Literal["float", "base64"],
) -> PoolingResponse:
items: List[PoolingResponseData] = []
num_prompt_tokens = 0
for idx, final_res in enumerate(final_res_batch):
item = PoolingResponseData(
index=idx,
data=_get_data(final_res.outputs, encoding_format),
)
prompt_token_ids = final_res.prompt_token_ids
items.append(item)
num_prompt_tokens += len(prompt_token_ids)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
total_tokens=num_prompt_tokens,
)
return PoolingResponse(
id=request_id,
created=created_time,
model=model_name,
data=items,
usage=usage,
)

View File

@ -20,32 +20,6 @@ from vllm.utils import make_async, merge_async_iterators
logger = init_logger(__name__) logger = init_logger(__name__)
def request_output_to_score_response(
final_res_batch: List[PoolingRequestOutput], request_id: str,
created_time: int, model_name: str) -> ScoreResponse:
data: List[ScoreResponseData] = []
num_prompt_tokens = 0
for idx, final_res in enumerate(final_res_batch):
classify_res = ScoringRequestOutput.from_base(final_res)
score_data = ScoreResponseData(index=idx,
score=classify_res.outputs.score)
data.append(score_data)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
total_tokens=num_prompt_tokens,
)
return ScoreResponse(
id=request_id,
created=created_time,
model=model_name,
data=data,
usage=usage,
)
def make_pairs(text_1: Union[List[str], str], text_2: Union[List[str], def make_pairs(text_1: Union[List[str], str], text_2: Union[List[str],
str]) -> List: str]) -> List:
if isinstance(text_1, (str, dict)): if isinstance(text_1, (str, dict)):
@ -103,7 +77,7 @@ class OpenAIServingScores(OpenAIServing):
model_name = request.model model_name = request.model
request_id = f"score-{self._base_request_id(raw_request)}" request_id = f"score-{self._base_request_id(raw_request)}"
created_time = int(time.monotonic()) created_time = int(time.time())
truncate_prompt_tokens = request.truncate_prompt_tokens truncate_prompt_tokens = request.truncate_prompt_tokens
request_prompts = [] request_prompts = []
@ -203,8 +177,12 @@ class OpenAIServingScores(OpenAIServing):
final_res_batch_checked = cast(List[PoolingRequestOutput], final_res_batch_checked = cast(List[PoolingRequestOutput],
final_res_batch) final_res_batch)
response = request_output_to_score_response( response = self.request_output_to_score_response(
final_res_batch_checked, request_id, created_time, model_name) final_res_batch_checked,
request_id,
created_time,
model_name,
)
except asyncio.CancelledError: except asyncio.CancelledError:
return self.create_error_response("Client disconnected") return self.create_error_response("Client disconnected")
except ValueError as e: except ValueError as e:
@ -212,3 +190,38 @@ class OpenAIServingScores(OpenAIServing):
return self.create_error_response(str(e)) return self.create_error_response(str(e))
return response return response
def request_output_to_score_response(
self,
final_res_batch: List[PoolingRequestOutput],
request_id: str,
created_time: int,
model_name: str,
) -> ScoreResponse:
items: List[ScoreResponseData] = []
num_prompt_tokens = 0
for idx, final_res in enumerate(final_res_batch):
classify_res = ScoringRequestOutput.from_base(final_res)
item = ScoreResponseData(
index=idx,
score=classify_res.outputs.score,
)
prompt_token_ids = final_res.prompt_token_ids
items.append(item)
num_prompt_tokens += len(prompt_token_ids)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
total_tokens=num_prompt_tokens,
)
return ScoreResponse(
id=request_id,
created=created_time,
model=model_name,
data=items,
usage=usage,
)

View File

@ -355,7 +355,8 @@ class PoolingRequestOutput(Generic[_O]):
pooled_data = seq_group.pooled_data pooled_data = seq_group.pooled_data
assert pooled_data is not None assert pooled_data is not None
output = PoolingOutput(pooled_data) data = pooled_data.to(dtype=torch.float32, device="cpu")
output = PoolingOutput(data)
prompt_token_ids = seq_group.prompt_token_ids prompt_token_ids = seq_group.prompt_token_ids
finished = seq_group.is_finished() finished = seq_group.is_finished()