[Misc] refactor examples series - lmcache (#16758)
Signed-off-by: reidliu41 <reid201711@gmail.com> Co-authored-by: reidliu41 <reid201711@gmail.com>
This commit is contained in:
parent
207da28186
commit
99ed526101
@ -3,9 +3,12 @@
|
||||
This file demonstrates the example usage of cpu offloading
|
||||
with LMCache.
|
||||
|
||||
Note that `pip install lmcache` is needed to run this example.
|
||||
Learn more about LMCache in https://github.com/LMCache/LMCache.
|
||||
Note that `lmcache` is needed to run this example.
|
||||
Requirements: Linux, Python: 3.10 or higher, CUDA: 12.1
|
||||
Learn more about LMCache environment setup, please refer to:
|
||||
https://docs.lmcache.ai/getting_started/installation.html
|
||||
"""
|
||||
import contextlib
|
||||
import os
|
||||
import time
|
||||
|
||||
@ -15,51 +18,83 @@ from lmcache.integration.vllm.utils import ENGINE_NAME
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.config import KVTransferConfig
|
||||
|
||||
# LMCache-related environment variables
|
||||
# Use experimental features in LMCache
|
||||
os.environ["LMCACHE_USE_EXPERIMENTAL"] = "True"
|
||||
# LMCache is set to use 256 tokens per chunk
|
||||
os.environ["LMCACHE_CHUNK_SIZE"] = "256"
|
||||
# Enable local CPU backend in LMCache
|
||||
os.environ["LMCACHE_LOCAL_CPU"] = "True"
|
||||
# Set local CPU memory limit to 5.0 GB
|
||||
os.environ["LMCACHE_MAX_LOCAL_CPU_SIZE"] = "5.0"
|
||||
|
||||
# This example script runs two requests with a shared prefix.
|
||||
shared_prompt = "Hello, how are you?" * 1000
|
||||
first_prompt = [
|
||||
shared_prompt + "Hello, my name is",
|
||||
]
|
||||
second_prompt = [
|
||||
shared_prompt + "Tell me a very long story",
|
||||
]
|
||||
def setup_environment_variables():
|
||||
# LMCache-related environment variables
|
||||
# Use experimental features in LMCache
|
||||
os.environ["LMCACHE_USE_EXPERIMENTAL"] = "True"
|
||||
# LMCache is set to use 256 tokens per chunk
|
||||
os.environ["LMCACHE_CHUNK_SIZE"] = "256"
|
||||
# Enable local CPU backend in LMCache
|
||||
os.environ["LMCACHE_LOCAL_CPU"] = "True"
|
||||
# Set local CPU memory limit to 5.0 GB
|
||||
os.environ["LMCACHE_MAX_LOCAL_CPU_SIZE"] = "5.0"
|
||||
|
||||
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=10)
|
||||
|
||||
ktc = KVTransferConfig.from_cli(
|
||||
@contextlib.contextmanager
|
||||
def build_llm_with_lmcache():
|
||||
ktc = KVTransferConfig.from_cli(
|
||||
'{"kv_connector":"LMCacheConnector", "kv_role":"kv_both"}')
|
||||
# Set GPU memory utilization to 0.8 for an A40 GPU with 40GB
|
||||
# memory. Reduce the value if your GPU has less memory.
|
||||
# Note that LMCache is not compatible with chunked prefill for now.
|
||||
llm = LLM(model="mistralai/Mistral-7B-Instruct-v0.2",
|
||||
# Set GPU memory utilization to 0.8 for an A40 GPU with 40GB
|
||||
# memory. Reduce the value if your GPU has less memory.
|
||||
# Note that LMCache is not compatible with chunked prefill for now.
|
||||
llm = LLM(model="mistralai/Mistral-7B-Instruct-v0.2",
|
||||
kv_transfer_config=ktc,
|
||||
max_model_len=8000,
|
||||
enable_chunked_prefill=False,
|
||||
gpu_memory_utilization=0.8)
|
||||
|
||||
outputs = llm.generate(first_prompt, sampling_params)
|
||||
for output in outputs:
|
||||
try:
|
||||
yield llm
|
||||
finally:
|
||||
# Clean up lmcache backend
|
||||
LMCacheEngineBuilder.destroy(ENGINE_NAME)
|
||||
|
||||
|
||||
def print_output(
|
||||
llm: LLM,
|
||||
prompt: list[str],
|
||||
sampling_params: SamplingParams,
|
||||
req_str: str,
|
||||
):
|
||||
start = time.time()
|
||||
outputs = llm.generate(prompt, sampling_params)
|
||||
print("-" * 50)
|
||||
for output in outputs:
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Generated text: {generated_text!r}")
|
||||
print("First request done.")
|
||||
print(f"Generation took {time.time() - start:.2f} seconds, "
|
||||
f"{req_str} request done.")
|
||||
print("-" * 50)
|
||||
|
||||
time.sleep(1)
|
||||
|
||||
outputs = llm.generate(second_prompt, sampling_params)
|
||||
for output in outputs:
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Generated text: {generated_text!r}")
|
||||
print("Second request done.")
|
||||
def main():
|
||||
setup_environment_variables()
|
||||
|
||||
# Clean up lmcache backend
|
||||
LMCacheEngineBuilder.destroy(ENGINE_NAME)
|
||||
with build_llm_with_lmcache() as llm:
|
||||
|
||||
# This example script runs two requests with a shared prefix.
|
||||
# Define the shared prompt and specific prompts
|
||||
shared_prompt = "Hello, how are you?" * 1000
|
||||
first_prompt = [
|
||||
shared_prompt + "Hello, my name is",
|
||||
]
|
||||
second_prompt = [
|
||||
shared_prompt + "Tell me a very long story",
|
||||
]
|
||||
|
||||
sampling_params = SamplingParams(temperature=0,
|
||||
top_p=0.95,
|
||||
max_tokens=10)
|
||||
|
||||
# Print the first output
|
||||
print_output(llm, first_prompt, sampling_params, "first")
|
||||
|
||||
time.sleep(1)
|
||||
|
||||
# print the second output
|
||||
print_output(llm, second_prompt, sampling_params, "second")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Loading…
x
Reference in New Issue
Block a user