[Misc] refactor examples series - lmcache (#16758)

Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
This commit is contained in:
Reid 2025-04-17 19:02:35 +08:00 committed by GitHub
parent 207da28186
commit 99ed526101
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -3,9 +3,12 @@
This file demonstrates the example usage of cpu offloading This file demonstrates the example usage of cpu offloading
with LMCache. with LMCache.
Note that `pip install lmcache` is needed to run this example. Note that `lmcache` is needed to run this example.
Learn more about LMCache in https://github.com/LMCache/LMCache. Requirements: Linux, Python: 3.10 or higher, CUDA: 12.1
Learn more about LMCache environment setup, please refer to:
https://docs.lmcache.ai/getting_started/installation.html
""" """
import contextlib
import os import os
import time import time
@ -15,6 +18,8 @@ from lmcache.integration.vllm.utils import ENGINE_NAME
from vllm import LLM, SamplingParams from vllm import LLM, SamplingParams
from vllm.config import KVTransferConfig from vllm.config import KVTransferConfig
def setup_environment_variables():
# LMCache-related environment variables # LMCache-related environment variables
# Use experimental features in LMCache # Use experimental features in LMCache
os.environ["LMCACHE_USE_EXPERIMENTAL"] = "True" os.environ["LMCACHE_USE_EXPERIMENTAL"] = "True"
@ -25,17 +30,9 @@ os.environ["LMCACHE_LOCAL_CPU"] = "True"
# Set local CPU memory limit to 5.0 GB # Set local CPU memory limit to 5.0 GB
os.environ["LMCACHE_MAX_LOCAL_CPU_SIZE"] = "5.0" os.environ["LMCACHE_MAX_LOCAL_CPU_SIZE"] = "5.0"
# This example script runs two requests with a shared prefix.
shared_prompt = "Hello, how are you?" * 1000
first_prompt = [
shared_prompt + "Hello, my name is",
]
second_prompt = [
shared_prompt + "Tell me a very long story",
]
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=10)
@contextlib.contextmanager
def build_llm_with_lmcache():
ktc = KVTransferConfig.from_cli( ktc = KVTransferConfig.from_cli(
'{"kv_connector":"LMCacheConnector", "kv_role":"kv_both"}') '{"kv_connector":"LMCacheConnector", "kv_role":"kv_both"}')
# Set GPU memory utilization to 0.8 for an A40 GPU with 40GB # Set GPU memory utilization to 0.8 for an A40 GPU with 40GB
@ -47,19 +44,57 @@ llm = LLM(model="mistralai/Mistral-7B-Instruct-v0.2",
enable_chunked_prefill=False, enable_chunked_prefill=False,
gpu_memory_utilization=0.8) gpu_memory_utilization=0.8)
outputs = llm.generate(first_prompt, sampling_params) try:
yield llm
finally:
# Clean up lmcache backend
LMCacheEngineBuilder.destroy(ENGINE_NAME)
def print_output(
llm: LLM,
prompt: list[str],
sampling_params: SamplingParams,
req_str: str,
):
start = time.time()
outputs = llm.generate(prompt, sampling_params)
print("-" * 50)
for output in outputs: for output in outputs:
generated_text = output.outputs[0].text generated_text = output.outputs[0].text
print(f"Generated text: {generated_text!r}") print(f"Generated text: {generated_text!r}")
print("First request done.") print(f"Generation took {time.time() - start:.2f} seconds, "
f"{req_str} request done.")
print("-" * 50)
def main():
setup_environment_variables()
with build_llm_with_lmcache() as llm:
# This example script runs two requests with a shared prefix.
# Define the shared prompt and specific prompts
shared_prompt = "Hello, how are you?" * 1000
first_prompt = [
shared_prompt + "Hello, my name is",
]
second_prompt = [
shared_prompt + "Tell me a very long story",
]
sampling_params = SamplingParams(temperature=0,
top_p=0.95,
max_tokens=10)
# Print the first output
print_output(llm, first_prompt, sampling_params, "first")
time.sleep(1) time.sleep(1)
outputs = llm.generate(second_prompt, sampling_params) # print the second output
for output in outputs: print_output(llm, second_prompt, sampling_params, "second")
generated_text = output.outputs[0].text
print(f"Generated text: {generated_text!r}")
print("Second request done.")
# Clean up lmcache backend
LMCacheEngineBuilder.destroy(ENGINE_NAME) if __name__ == "__main__":
main()