[Feature][kernel] tensor parallelism with bitsandbytes quantization (#8434)

This commit is contained in:
chenqianfzh 2024-09-17 08:09:12 -07:00 committed by GitHub
parent 1009e93c5d
commit 9855b99502
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 80 additions and 17 deletions

View File

@ -64,6 +64,24 @@ def test_load_8bit_bnb_model(hf_runner, vllm_runner, example_prompts,
model_name)
@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason='Test requires at least 2 GPUs.')
@pytest.mark.skipif(not is_quant_method_supported("bitsandbytes"),
reason='bitsandbytes is not supported on this GPU type.')
@pytest.mark.parametrize("model_name, description", models_4bit_to_test)
@fork_new_process_for_each_test
def test_load_tp_4bit_bnb_model(hf_runner, vllm_runner, example_prompts,
model_name, description) -> None:
hf_model_kwargs = {"load_in_4bit": True}
validate_generated_texts(hf_runner,
vllm_runner,
example_prompts[:1],
model_name,
hf_model_kwargs,
vllm_tp_size=2)
def log_generated_texts(prompts, outputs, runner_name):
logged_texts = []
for i, (_, generated_text) in enumerate(outputs):
@ -80,22 +98,21 @@ def validate_generated_texts(hf_runner,
vllm_runner,
prompts,
model_name,
hf_model_kwargs=None):
hf_model_kwargs=None,
vllm_tp_size=1):
# NOTE: run vLLM first, as it requires a clean process
# when using distributed inference
#Run with vLLM runner
with vllm_runner(model_name,
quantization='bitsandbytes',
load_format='bitsandbytes',
tensor_parallel_size=vllm_tp_size,
enforce_eager=True,
gpu_memory_utilization=0.8) as llm:
vllm_outputs = llm.generate_greedy(prompts, 8)
vllm_logs = log_generated_texts(prompts, vllm_outputs, "VllmRunner")
# Clean up the GPU memory for the next test
torch.cuda.synchronize()
gc.collect()
torch.cuda.empty_cache()
@ -108,7 +125,6 @@ def validate_generated_texts(hf_runner,
hf_logs = log_generated_texts(prompts, hf_outputs, "HfRunner")
# Clean up the GPU memory for the next test
torch.cuda.synchronize()
gc.collect()
torch.cuda.empty_cache()

View File

@ -393,12 +393,6 @@ class ModelConfig:
"Pipeline parallelism is only supported for the following "
f" architectures: {_PP_SUPPORTED_MODELS}.")
if self.quantization == "bitsandbytes" and (
parallel_config.tensor_parallel_size > 1
or parallel_config.pipeline_parallel_size > 1):
raise ValueError(
"BitAndBytes quantization with TP or PP is not supported yet.")
# Remove the constraint after the bitsandbytes issue is fixed:
# https://github.com/bitsandbytes-foundation/bitsandbytes/issues/1308
if self.quantization == "bitsandbytes" and self.enforce_eager is False:

View File

@ -530,8 +530,11 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
param_data = param_data.narrow(output_dim, shard_offset,
shard_size)
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
# bitsandbytes loads the weights of the specific portion
# no need to narrow here
if not use_bitsandbytes_4bit:
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
# Special case for AQLM codebooks.
elif is_metadata:
# metadata indicates fixed size concatenated along dim 0
@ -899,8 +902,13 @@ class QKVParallelLinear(ColumnParallelLinear):
else:
shard_id = tp_rank // self.num_kv_head_replicas
start_idx = shard_id * shard_size
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
# bitsandbytes loads the weights of the specific portion
# no need to narrow here
if not use_bitsandbytes_4bit:
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
shard_size)
# Special case for for AQLM codebooks.
elif is_metadata:
# metadata indicates fixed size concatenated along dim 0
@ -1000,6 +1008,7 @@ class RowParallelLinear(LinearBase):
tp_rank = get_tensor_model_parallel_rank()
tp_size = get_tensor_model_parallel_world_size()
input_dim = getattr(param, "input_dim", None)
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
# Special case for GGUF
is_gguf_weight = getattr(param, "is_gguf_weight", False)
@ -1015,7 +1024,9 @@ class RowParallelLinear(LinearBase):
param.materialize(tuple(weight_shape), dtype=loaded_weight.dtype)
param_data = param.data
if input_dim is not None:
# bitsandbytes loads the weights of the specific portion
# no need to narrow here
if input_dim is not None and not use_bitsandbytes_4bit:
shard_size = param_data.shape[input_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(input_dim, start_idx,

View File

@ -22,6 +22,8 @@ from transformers.utils import SAFE_WEIGHTS_INDEX_NAME
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoadFormat,
LoRAConfig, ModelConfig, MultiModalConfig,
ParallelConfig, SchedulerConfig)
from vllm.distributed import (get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
from vllm.envs import VLLM_USE_MODELSCOPE
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization.base_config import (
@ -689,6 +691,8 @@ class ShardedStateLoader(BaseModelLoader):
class BitsAndBytesModelLoader(BaseModelLoader):
"""Model loader to load model weights with BitAndBytes quantization."""
# TODO: these module names are for Llama only,
# change so that it works with other models as well
default_target_modules = [
"gate_proj", "down_proj", "up_proj", "q_proj", "k_proj", "v_proj",
"o_proj"
@ -911,13 +915,44 @@ class BitsAndBytesModelLoader(BaseModelLoader):
def _unquantized_generator(self, hf_weights_files, use_safetensors,
quant_state_dict) -> Generator:
from bitsandbytes.functional import quantize_4bit
tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
for weight_name, weight_tensor in self._hf_weight_iter(
hf_weights_files, use_safetensors):
if any(target_module in weight_name
for target_module in self.target_modules):
weight_name = weight_name.replace(".weight", ".qweight")
# weight partitions of different modules occur at
# different dimensions
# TODO: these module names are for Llama only,
# change so that it works with other models as well
if 'down_proj' in weight_name or 'o_proj' in weight_name:
total_size = weight_tensor.size(-1)
start_index = total_size // tp_size * tp_rank
end_index = total_size // tp_size * (tp_rank + 1)
weight_sub_tensor = weight_tensor[...,
start_index:end_index]
else:
total_size = weight_tensor.size(0)
start_index = total_size // tp_size * tp_rank
end_index = total_size // tp_size * (tp_rank + 1)
weight_sub_tensor = weight_tensor[start_index:end_index,
...]
# bitsandbytes requires data in GPU
loaded_weight = weight_tensor.cuda().data
if weight_sub_tensor.is_cuda:
loaded_weight = weight_sub_tensor
else:
loaded_weight = weight_sub_tensor.cuda()
# remove the following after the issue is fixed:
# https://github.com/bitsandbytes-foundation/bitsandbytes/issues/1342
if loaded_weight.is_contiguous() is False:
loaded_weight = loaded_weight.contiguous()
with set_default_torch_dtype(torch.float32):
processed_weight, quant_state = quantize_4bit(
loaded_weight,
@ -958,6 +993,13 @@ class BitsAndBytesModelLoader(BaseModelLoader):
f"BitsAndBytes loader does not support {quant_method} "
"quantization")
# The quant_states in pre_quantized models cannot work with a split
# weight tensor. So TP does not work with pre_quantized bnb models.
if pre_quant and get_tensor_model_parallel_world_size() > 1:
raise ValueError(
"Prequant BitsAndBytes models with TP is not supported."
"Please try with PP.")
load_8bit = False
if pre_quant:
load_8bit = quant_config.get('load_in_8bit', False)