[Kernel] Flash Attention 3 Support (#12093)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
This commit is contained in:
parent
c5b4b11d7f
commit
978b45f399
@ -24,9 +24,6 @@ include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
|
||||
# Suppress potential warnings about unused manually-specified variables
|
||||
set(ignoreMe "${VLLM_PYTHON_PATH}")
|
||||
|
||||
# Prevent installation of dependencies (cutlass) by default.
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" ALL_COMPONENTS)
|
||||
|
||||
#
|
||||
# Supported python versions. These versions will be searched in order, the
|
||||
# first match will be selected. These should be kept in sync with setup.py.
|
||||
@ -535,7 +532,7 @@ if(VLLM_GPU_LANG STREQUAL "HIP")
|
||||
endif()
|
||||
|
||||
# vllm-flash-attn currently only supported on CUDA
|
||||
if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda")
|
||||
if (NOT VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
return()
|
||||
endif ()
|
||||
|
||||
@ -558,7 +555,7 @@ endif()
|
||||
# They should be identical but if they aren't, this is a massive footgun.
|
||||
#
|
||||
# The vllm-flash-attn install rules are nested under vllm to make sure the library gets installed in the correct place.
|
||||
# To only install vllm-flash-attn, use --component vllm_flash_attn_c.
|
||||
# To only install vllm-flash-attn, use --component _vllm_fa2_C (for FA2) or --component _vllm_fa3_C (for FA3).
|
||||
# If no component is specified, vllm-flash-attn is still installed.
|
||||
|
||||
# If VLLM_FLASH_ATTN_SRC_DIR is set, vllm-flash-attn is installed from that directory instead of downloading.
|
||||
@ -570,43 +567,41 @@ if (DEFINED ENV{VLLM_FLASH_ATTN_SRC_DIR})
|
||||
endif()
|
||||
|
||||
if(VLLM_FLASH_ATTN_SRC_DIR)
|
||||
FetchContent_Declare(vllm-flash-attn SOURCE_DIR ${VLLM_FLASH_ATTN_SRC_DIR})
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn SOURCE_DIR
|
||||
${VLLM_FLASH_ATTN_SRC_DIR}
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
vllm-flash-attn
|
||||
GIT_REPOSITORY https://github.com/vllm-project/flash-attention.git
|
||||
GIT_TAG 96266b1111111f3d11aabefaf3bacbab6a89d03c
|
||||
GIT_TAG 90eacc1af2a7c3de62ea249e929ed5faccf38954
|
||||
GIT_PROGRESS TRUE
|
||||
# Don't share the vllm-flash-attn build between build types
|
||||
BINARY_DIR ${CMAKE_BINARY_DIR}/vllm-flash-attn
|
||||
)
|
||||
endif()
|
||||
|
||||
# Set the parent build flag so that the vllm-flash-attn library does not redo compile flag and arch initialization.
|
||||
set(VLLM_PARENT_BUILD ON)
|
||||
|
||||
# Ensure the vllm/vllm_flash_attn directory exists before installation
|
||||
install(CODE "file(MAKE_DIRECTORY \"\${CMAKE_INSTALL_PREFIX}/vllm/vllm_flash_attn\")" COMPONENT vllm_flash_attn_c)
|
||||
|
||||
# Make sure vllm-flash-attn install rules are nested under vllm/
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY FALSE)" COMPONENT vllm_flash_attn_c)
|
||||
install(CODE "set(OLD_CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}\")" COMPONENT vllm_flash_attn_c)
|
||||
install(CODE "set(CMAKE_INSTALL_PREFIX \"\${CMAKE_INSTALL_PREFIX}/vllm/\")" COMPONENT vllm_flash_attn_c)
|
||||
|
||||
# Fetch the vllm-flash-attn library
|
||||
FetchContent_MakeAvailable(vllm-flash-attn)
|
||||
message(STATUS "vllm-flash-attn is available at ${vllm-flash-attn_SOURCE_DIR}")
|
||||
|
||||
# Restore the install prefix
|
||||
install(CODE "set(CMAKE_INSTALL_PREFIX \"\${OLD_CMAKE_INSTALL_PREFIX}\")" COMPONENT vllm_flash_attn_c)
|
||||
install(CODE "set(CMAKE_INSTALL_LOCAL_ONLY TRUE)" COMPONENT vllm_flash_attn_c)
|
||||
|
||||
# Copy over the vllm-flash-attn python files
|
||||
# Copy over the vllm-flash-attn python files (duplicated for fa2 and fa3, in
|
||||
# case only one is built, in the case both are built redundant work is done)
|
||||
install(
|
||||
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
|
||||
DESTINATION vllm/vllm_flash_attn
|
||||
COMPONENT vllm_flash_attn_c
|
||||
FILES_MATCHING PATTERN "*.py"
|
||||
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
|
||||
DESTINATION vllm_flash_attn
|
||||
COMPONENT _vllm_fa2_C
|
||||
FILES_MATCHING PATTERN "*.py"
|
||||
)
|
||||
|
||||
install(
|
||||
DIRECTORY ${vllm-flash-attn_SOURCE_DIR}/vllm_flash_attn/
|
||||
DESTINATION vllm_flash_attn
|
||||
COMPONENT _vllm_fa3_C
|
||||
FILES_MATCHING PATTERN "*.py"
|
||||
)
|
||||
|
||||
# Nothing after vllm-flash-attn, see comment about macros above
|
||||
|
12
setup.py
12
setup.py
@ -228,8 +228,11 @@ class cmake_build_ext(build_ext):
|
||||
|
||||
# CMake appends the extension prefix to the install path,
|
||||
# and outdir already contains that prefix, so we need to remove it.
|
||||
# We assume only the final component of extension prefix is added by
|
||||
# CMake, this is currently true for current extensions but may not
|
||||
# always be the case.
|
||||
prefix = outdir
|
||||
for i in range(ext.name.count('.')):
|
||||
if '.' in ext.name:
|
||||
prefix = prefix.parent
|
||||
|
||||
# prefix here should actually be the same for all components
|
||||
@ -298,7 +301,8 @@ class repackage_wheel(build_ext):
|
||||
files_to_copy = [
|
||||
"vllm/_C.abi3.so",
|
||||
"vllm/_moe_C.abi3.so",
|
||||
"vllm/vllm_flash_attn/vllm_flash_attn_c.abi3.so",
|
||||
"vllm/vllm_flash_attn/_vllm_fa2_C.abi3.so",
|
||||
"vllm/vllm_flash_attn/_vllm_fa3_C.abi3.so",
|
||||
"vllm/vllm_flash_attn/flash_attn_interface.py",
|
||||
"vllm/vllm_flash_attn/__init__.py",
|
||||
"vllm/cumem_allocator.abi3.so",
|
||||
@ -593,8 +597,8 @@ if _is_hip():
|
||||
ext_modules.append(CMakeExtension(name="vllm._rocm_C"))
|
||||
|
||||
if _is_cuda():
|
||||
ext_modules.append(
|
||||
CMakeExtension(name="vllm.vllm_flash_attn.vllm_flash_attn_c"))
|
||||
ext_modules.append(CMakeExtension(name="vllm.vllm_flash_attn._vllm_fa2_C"))
|
||||
ext_modules.append(CMakeExtension(name="vllm.vllm_flash_attn._vllm_fa3_C"))
|
||||
ext_modules.append(CMakeExtension(name="vllm.cumem_allocator"))
|
||||
|
||||
if _build_custom_ops():
|
||||
|
@ -78,6 +78,7 @@ CASES = [
|
||||
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
|
||||
@pytest.mark.parametrize("soft_cap", [None, 50])
|
||||
@pytest.mark.parametrize("num_blocks", [2048])
|
||||
@pytest.mark.parametrize("fa_version", [2, 3])
|
||||
@torch.inference_mode()
|
||||
def test_cascade(
|
||||
seq_lens_and_common_prefix: Tuple[List[Tuple[int, int]], int],
|
||||
@ -87,8 +88,14 @@ def test_cascade(
|
||||
block_size: int,
|
||||
soft_cap: Optional[float],
|
||||
num_blocks: int,
|
||||
fa_version: int,
|
||||
) -> None:
|
||||
torch.set_default_device("cuda")
|
||||
if fa_version == 3 and (torch.cuda.get_device_capability() == (8, 6)
|
||||
or torch.cuda.get_device_capability() == (8, 9)):
|
||||
pytest.skip("Flash attention version 3 fails on 8.6 and 8.9 due to "
|
||||
"insufficient shared memory for some shapes")
|
||||
|
||||
current_platform.seed_everything(0)
|
||||
|
||||
window_size = (-1, -1)
|
||||
@ -118,9 +125,7 @@ def test_cascade(
|
||||
cu_query_lens = torch.tensor([0] + query_lens,
|
||||
dtype=torch.int32).cumsum(dim=0,
|
||||
dtype=torch.int32)
|
||||
cu_kv_lens = torch.tensor([0] + kv_lens,
|
||||
dtype=torch.int32).cumsum(dim=0,
|
||||
dtype=torch.int32)
|
||||
kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int32)
|
||||
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
|
||||
block_tables = torch.randint(0,
|
||||
num_blocks,
|
||||
@ -140,7 +145,7 @@ def test_cascade(
|
||||
k=key_cache,
|
||||
v=value_cache,
|
||||
cu_seqlens_q=cu_query_lens,
|
||||
cu_seqlens_k=cu_kv_lens,
|
||||
seqused_k=kv_lens_tensor,
|
||||
max_seqlen_q=max_query_len,
|
||||
max_seqlen_k=max_kv_len,
|
||||
softmax_scale=scale,
|
||||
@ -154,10 +159,8 @@ def test_cascade(
|
||||
assert all(common_prefix_len < kv_len for kv_len in kv_lens)
|
||||
cu_prefix_query_lens = torch.tensor([0, total_num_query_tokens],
|
||||
dtype=torch.int32)
|
||||
cu_prefix_kv_lens = torch.tensor([0, common_prefix_len], dtype=torch.int32)
|
||||
cu_suffix_kv_lens = (
|
||||
cu_kv_lens -
|
||||
torch.arange(num_seqs + 1, dtype=torch.int32) * common_prefix_len)
|
||||
prefix_kv_lens = torch.tensor([common_prefix_len], dtype=torch.int32)
|
||||
suffix_kv_lens = kv_lens_tensor - common_prefix_len
|
||||
output = torch.empty_like(query)
|
||||
cascade_attention(
|
||||
output=output,
|
||||
@ -167,8 +170,8 @@ def test_cascade(
|
||||
cu_query_lens=cu_query_lens,
|
||||
max_query_len=max_query_len,
|
||||
cu_prefix_query_lens=cu_prefix_query_lens,
|
||||
cu_prefix_kv_lens=cu_prefix_kv_lens,
|
||||
cu_suffix_kv_lens=cu_suffix_kv_lens,
|
||||
prefix_kv_lens=prefix_kv_lens,
|
||||
suffix_kv_lens=suffix_kv_lens,
|
||||
max_kv_len=max_kv_len,
|
||||
softmax_scale=scale,
|
||||
alibi_slopes=None,
|
||||
@ -176,6 +179,7 @@ def test_cascade(
|
||||
logits_soft_cap=soft_cap if soft_cap is not None else 0,
|
||||
block_table=block_tables,
|
||||
common_prefix_len=common_prefix_len,
|
||||
fa_version=fa_version,
|
||||
)
|
||||
|
||||
# Compare the results.
|
||||
|
@ -80,6 +80,7 @@ def ref_paged_attn(
|
||||
@pytest.mark.parametrize("soft_cap", [None, 10.0, 50.0])
|
||||
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
|
||||
@pytest.mark.parametrize("sliding_window", [None, 256])
|
||||
@pytest.mark.parametrize("fa_version", [2, 3])
|
||||
@torch.inference_mode()
|
||||
def test_flash_attn_with_paged_kv(
|
||||
use_out: bool,
|
||||
@ -91,8 +92,14 @@ def test_flash_attn_with_paged_kv(
|
||||
soft_cap: Optional[float],
|
||||
num_blocks: int,
|
||||
sliding_window: Optional[int],
|
||||
fa_version: int,
|
||||
) -> None:
|
||||
torch.set_default_device("cuda")
|
||||
if fa_version == 3 and (torch.cuda.get_device_capability() == (8, 6)
|
||||
or torch.cuda.get_device_capability() == (8, 9)):
|
||||
pytest.skip("Flash attention version 3 fails on 8.6 and 8.9 due to "
|
||||
"insufficient shared memory for some shapes")
|
||||
|
||||
current_platform.seed_everything(0)
|
||||
num_seqs = len(kv_lens)
|
||||
num_query_heads = num_heads[0]
|
||||
@ -131,6 +138,7 @@ def test_flash_attn_with_paged_kv(
|
||||
cache_seqlens=kv_lens_tensor,
|
||||
softcap=soft_cap if soft_cap is not None else 0,
|
||||
window_size=window_size,
|
||||
fa_version=fa_version,
|
||||
)
|
||||
output = output if not use_out else out
|
||||
output = output.squeeze(1)
|
||||
@ -159,6 +167,7 @@ def test_flash_attn_with_paged_kv(
|
||||
@pytest.mark.parametrize("dtype", DTYPES)
|
||||
@pytest.mark.parametrize("soft_cap", [None, 10.0, 50.0])
|
||||
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
|
||||
@pytest.mark.parametrize("fa_version", [2, 3])
|
||||
@torch.inference_mode()
|
||||
def test_varlen_with_paged_kv(
|
||||
use_out: bool,
|
||||
@ -170,8 +179,14 @@ def test_varlen_with_paged_kv(
|
||||
block_size: int,
|
||||
soft_cap: Optional[float],
|
||||
num_blocks: int,
|
||||
fa_version: int,
|
||||
) -> None:
|
||||
torch.set_default_device("cuda")
|
||||
if fa_version == 3 and (torch.cuda.get_device_capability() == (8, 6)
|
||||
or torch.cuda.get_device_capability() == (8, 9)):
|
||||
pytest.skip("Flash attention version 3 fails on 8.6 and 8.9 due to "
|
||||
"insufficient shared memory for some shapes")
|
||||
|
||||
current_platform.seed_everything(0)
|
||||
num_seqs = len(seq_lens)
|
||||
query_lens = [x[0] for x in seq_lens]
|
||||
@ -198,9 +213,7 @@ def test_varlen_with_paged_kv(
|
||||
cu_query_lens = torch.tensor([0] + query_lens,
|
||||
dtype=torch.int32).cumsum(dim=0,
|
||||
dtype=torch.int32)
|
||||
cu_kv_lens = torch.tensor([0] + kv_lens,
|
||||
dtype=torch.int32).cumsum(dim=0,
|
||||
dtype=torch.int32)
|
||||
kv_lens = torch.tensor(kv_lens, dtype=torch.int32)
|
||||
|
||||
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
|
||||
block_tables = torch.randint(0,
|
||||
@ -215,7 +228,7 @@ def test_varlen_with_paged_kv(
|
||||
v=value_cache,
|
||||
out=out,
|
||||
cu_seqlens_q=cu_query_lens,
|
||||
cu_seqlens_k=cu_kv_lens,
|
||||
seqused_k=kv_lens,
|
||||
max_seqlen_q=max_query_len,
|
||||
max_seqlen_k=max_kv_len,
|
||||
softmax_scale=scale,
|
||||
@ -223,6 +236,7 @@ def test_varlen_with_paged_kv(
|
||||
window_size=window_size,
|
||||
block_table=block_tables,
|
||||
softcap=soft_cap if soft_cap is not None else 0,
|
||||
fa_version=fa_version,
|
||||
)
|
||||
output = output if not use_out else out
|
||||
|
||||
|
@ -17,7 +17,9 @@ from vllm.attention.backends.utils import (
|
||||
compute_slot_mapping_start_idx, get_num_prefill_decode_query_kv_tokens,
|
||||
get_seq_len_block_table_args, is_all_cross_attn_metadata_set,
|
||||
is_all_encoder_attn_metadata_set, is_block_tables_empty)
|
||||
from vllm.envs import VLLM_FLASH_ATTN_VERSION
|
||||
from vllm.multimodal import MultiModalPlaceholderMap
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import async_tensor_h2d, make_tensor_with_pad
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -25,7 +27,8 @@ if TYPE_CHECKING:
|
||||
ModelInputForGPUWithSamplingMetadata)
|
||||
|
||||
from vllm.vllm_flash_attn import (flash_attn_varlen_func,
|
||||
flash_attn_with_kvcache)
|
||||
flash_attn_with_kvcache,
|
||||
is_fa_version_supported)
|
||||
|
||||
|
||||
class FlashAttentionBackend(AttentionBackend):
|
||||
@ -634,6 +637,20 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
f"Supported head sizes are: {support_head_sizes}.")
|
||||
self.attn_type = attn_type
|
||||
|
||||
# if hopper default to FA3, otherwise stick to FA2 for now
|
||||
# TODO(lucas): profile FA3 on ampere to see if it makes sense to
|
||||
# use FA3 as default for both
|
||||
if current_platform.get_device_capability()[0] >= 9:
|
||||
self.fa_version = 3 if is_fa_version_supported(3) else 2
|
||||
else:
|
||||
self.fa_version = 2
|
||||
|
||||
if VLLM_FLASH_ATTN_VERSION is not None:
|
||||
assert VLLM_FLASH_ATTN_VERSION in [2, 3]
|
||||
self.fa_version = VLLM_FLASH_ATTN_VERSION
|
||||
|
||||
assert is_fa_version_supported(self.fa_version)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
layer: AttentionLayer,
|
||||
@ -752,6 +769,7 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
alibi_slopes=alibi_slopes,
|
||||
softcap=logits_soft_cap,
|
||||
out=prefill_output,
|
||||
fa_version=self.fa_version,
|
||||
)
|
||||
else:
|
||||
# prefix-enabled attention
|
||||
@ -765,7 +783,7 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
v=value_cache,
|
||||
cu_seqlens_q=prefill_meta.query_start_loc,
|
||||
max_seqlen_q=prefill_meta.max_query_len,
|
||||
cu_seqlens_k=prefill_meta.seq_start_loc,
|
||||
seqused_k=prefill_meta.seq_lens_tensor,
|
||||
max_seqlen_k=max_seq_len,
|
||||
softmax_scale=softmax_scale,
|
||||
causal=True,
|
||||
@ -774,6 +792,7 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
block_table=prefill_meta.block_tables,
|
||||
softcap=logits_soft_cap,
|
||||
out=prefill_output,
|
||||
fa_version=self.fa_version,
|
||||
)
|
||||
|
||||
if decode_meta := attn_metadata.decode_metadata:
|
||||
@ -793,7 +812,7 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
v=value_cache,
|
||||
cu_seqlens_q=decode_meta.query_start_loc,
|
||||
max_seqlen_q=decode_meta.max_decode_query_len,
|
||||
cu_seqlens_k=decode_meta.seq_start_loc,
|
||||
seqused_k=decode_meta.seq_lens_tensor,
|
||||
max_seqlen_k=decode_meta.max_decode_seq_len,
|
||||
softmax_scale=softmax_scale,
|
||||
causal=True,
|
||||
@ -802,6 +821,7 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
softcap=logits_soft_cap,
|
||||
block_table=decode_meta.block_tables,
|
||||
out=decode_output,
|
||||
fa_version=self.fa_version,
|
||||
)
|
||||
else:
|
||||
# Use flash_attn_with_kvcache for normal decoding.
|
||||
@ -822,6 +842,7 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
alibi_slopes=alibi_slopes,
|
||||
softcap=logits_soft_cap,
|
||||
out=decode_output.unsqueeze(1),
|
||||
fa_version=self.fa_version,
|
||||
)
|
||||
return output
|
||||
|
||||
|
12
vllm/envs.py
12
vllm/envs.py
@ -11,6 +11,7 @@ if TYPE_CHECKING:
|
||||
VLLM_NCCL_SO_PATH: Optional[str] = None
|
||||
LD_LIBRARY_PATH: Optional[str] = None
|
||||
VLLM_USE_TRITON_FLASH_ATTN: bool = False
|
||||
VLLM_FLASH_ATTN_VERSION: Optional[int] = None
|
||||
LOCAL_RANK: int = 0
|
||||
CUDA_VISIBLE_DEVICES: Optional[str] = None
|
||||
VLLM_ENGINE_ITERATION_TIMEOUT_S: int = 60
|
||||
@ -90,6 +91,12 @@ def get_default_config_root():
|
||||
)
|
||||
|
||||
|
||||
def maybe_convert_int(value: Optional[str]) -> Optional[int]:
|
||||
if value is None:
|
||||
return None
|
||||
return int(value)
|
||||
|
||||
|
||||
# The begin-* and end* here are used by the documentation generator
|
||||
# to extract the used env vars.
|
||||
|
||||
@ -203,6 +210,11 @@ environment_variables: Dict[str, Callable[[], Any]] = {
|
||||
lambda: (os.environ.get("VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in
|
||||
("true", "1")),
|
||||
|
||||
# Force vllm to use a specific flash-attention version (2 or 3), only valid
|
||||
# when using the flash-attention backend.
|
||||
"VLLM_FLASH_ATTN_VERSION":
|
||||
lambda: maybe_convert_int(os.environ.get("VLLM_FLASH_ATTN_VERSION", None)),
|
||||
|
||||
# Internal flag to enable Dynamo fullgraph capture
|
||||
"VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE":
|
||||
lambda: bool(
|
||||
|
@ -9,8 +9,11 @@ import triton.language as tl
|
||||
|
||||
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
||||
AttentionMetadata, AttentionType)
|
||||
from vllm.envs import VLLM_FLASH_ATTN_VERSION
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import cdiv
|
||||
from vllm.vllm_flash_attn import flash_attn_varlen_func
|
||||
from vllm.vllm_flash_attn import (flash_attn_varlen_func,
|
||||
is_fa_version_supported)
|
||||
|
||||
|
||||
class FlashAttentionBackend(AttentionBackend):
|
||||
@ -63,7 +66,7 @@ class FlashAttentionMetadata:
|
||||
max_query_len: int
|
||||
query_start_loc: torch.Tensor
|
||||
max_seq_len: int
|
||||
seq_start_loc: torch.Tensor
|
||||
seq_lens: torch.Tensor
|
||||
block_table: torch.Tensor
|
||||
slot_mapping: torch.Tensor
|
||||
|
||||
@ -71,8 +74,8 @@ class FlashAttentionMetadata:
|
||||
use_cascade: bool
|
||||
common_prefix_len: int
|
||||
cu_prefix_query_lens: Optional[torch.Tensor]
|
||||
cu_prefix_kv_lens: Optional[torch.Tensor]
|
||||
cu_suffix_kv_lens: Optional[torch.Tensor]
|
||||
prefix_kv_lens: Optional[torch.Tensor]
|
||||
suffix_kv_lens: Optional[torch.Tensor]
|
||||
|
||||
# For logging.
|
||||
num_input_tokens: int = 0 # Number of tokens including padding.
|
||||
@ -128,6 +131,20 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
"are not implemented for "
|
||||
"FlashAttentionImpl")
|
||||
|
||||
# if hopper default to FA3, otherwise stick to FA2 for now
|
||||
# TODO(lucas): profile FA3 on ampere to see if it makes sense to
|
||||
# use FA3 as default for both
|
||||
if current_platform.get_device_capability()[0] >= 9:
|
||||
self.fa_version = 3 if is_fa_version_supported(3) else 2
|
||||
else:
|
||||
self.fa_version = 2
|
||||
|
||||
if VLLM_FLASH_ATTN_VERSION is not None:
|
||||
assert VLLM_FLASH_ATTN_VERSION in [2, 3]
|
||||
self.fa_version = VLLM_FLASH_ATTN_VERSION
|
||||
|
||||
assert is_fa_version_supported(self.fa_version)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
@ -196,7 +213,7 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
out=output[:num_actual_tokens],
|
||||
cu_seqlens_q=attn_metadata.query_start_loc,
|
||||
max_seqlen_q=attn_metadata.max_query_len,
|
||||
cu_seqlens_k=attn_metadata.seq_start_loc,
|
||||
seqused_k=attn_metadata.seq_lens,
|
||||
max_seqlen_k=attn_metadata.max_seq_len,
|
||||
softmax_scale=self.scale,
|
||||
causal=True,
|
||||
@ -204,6 +221,7 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
window_size=self.sliding_window,
|
||||
block_table=attn_metadata.block_table,
|
||||
softcap=self.logits_soft_cap,
|
||||
fa_version=self.fa_version,
|
||||
)
|
||||
return output
|
||||
|
||||
@ -216,8 +234,8 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
cu_query_lens=attn_metadata.query_start_loc,
|
||||
max_query_len=attn_metadata.max_query_len,
|
||||
cu_prefix_query_lens=attn_metadata.cu_prefix_query_lens,
|
||||
cu_prefix_kv_lens=attn_metadata.cu_prefix_kv_lens,
|
||||
cu_suffix_kv_lens=attn_metadata.cu_suffix_kv_lens,
|
||||
prefix_kv_lens=attn_metadata.prefix_kv_lens,
|
||||
suffix_kv_lens=attn_metadata.suffix_kv_lens,
|
||||
max_kv_len=attn_metadata.max_seq_len,
|
||||
softmax_scale=self.scale,
|
||||
alibi_slopes=self.alibi_slopes,
|
||||
@ -225,6 +243,7 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
logits_soft_cap=self.logits_soft_cap,
|
||||
block_table=attn_metadata.block_table,
|
||||
common_prefix_len=attn_metadata.common_prefix_len,
|
||||
fa_version=self.fa_version,
|
||||
)
|
||||
return output
|
||||
|
||||
@ -305,8 +324,8 @@ def cascade_attention(
|
||||
cu_query_lens: torch.Tensor,
|
||||
max_query_len: int,
|
||||
cu_prefix_query_lens: torch.Tensor,
|
||||
cu_prefix_kv_lens: torch.Tensor,
|
||||
cu_suffix_kv_lens: torch.Tensor,
|
||||
prefix_kv_lens: torch.Tensor,
|
||||
suffix_kv_lens: torch.Tensor,
|
||||
max_kv_len: int,
|
||||
softmax_scale: float,
|
||||
alibi_slopes: Optional[torch.Tensor],
|
||||
@ -314,6 +333,7 @@ def cascade_attention(
|
||||
logits_soft_cap: float,
|
||||
block_table: torch.Tensor,
|
||||
common_prefix_len: int,
|
||||
fa_version: int,
|
||||
) -> torch.Tensor:
|
||||
assert alibi_slopes is None, ("Cascade attention does not support ALiBi.")
|
||||
# TODO: Support sliding window.
|
||||
@ -332,7 +352,7 @@ def cascade_attention(
|
||||
k=key_cache,
|
||||
v=value_cache,
|
||||
cu_seqlens_q=cu_prefix_query_lens,
|
||||
cu_seqlens_k=cu_prefix_kv_lens,
|
||||
seqused_k=prefix_kv_lens,
|
||||
max_seqlen_q=num_tokens,
|
||||
max_seqlen_k=common_prefix_len,
|
||||
softmax_scale=softmax_scale,
|
||||
@ -341,6 +361,7 @@ def cascade_attention(
|
||||
block_table=block_table[:1],
|
||||
softcap=logits_soft_cap,
|
||||
return_softmax_lse=True,
|
||||
fa_version=fa_version,
|
||||
)
|
||||
|
||||
# Process suffix per query.
|
||||
@ -349,7 +370,7 @@ def cascade_attention(
|
||||
k=key_cache,
|
||||
v=value_cache,
|
||||
cu_seqlens_q=cu_query_lens,
|
||||
cu_seqlens_k=cu_suffix_kv_lens,
|
||||
seqused_k=suffix_kv_lens,
|
||||
max_seqlen_q=max_query_len,
|
||||
max_seqlen_k=max_kv_len - common_prefix_len,
|
||||
softmax_scale=softmax_scale,
|
||||
@ -358,6 +379,7 @@ def cascade_attention(
|
||||
block_table=block_table[:, num_common_kv_blocks:],
|
||||
softcap=logits_soft_cap,
|
||||
return_softmax_lse=True,
|
||||
fa_version=fa_version,
|
||||
)
|
||||
|
||||
# Merge prefix and suffix outputs, and store the result in output.
|
||||
|
@ -199,11 +199,11 @@ class GPUModelRunner:
|
||||
device="cpu",
|
||||
pin_memory=self.pin_memory)
|
||||
self.query_start_loc_np = self.query_start_loc_cpu.numpy()
|
||||
self.seq_start_loc_cpu = torch.zeros(self.max_num_reqs + 1,
|
||||
dtype=torch.int32,
|
||||
device="cpu",
|
||||
pin_memory=self.pin_memory)
|
||||
self.seq_start_loc_np = self.seq_start_loc_cpu.numpy()
|
||||
self.seq_lens_cpu = torch.zeros(self.max_num_reqs,
|
||||
dtype=torch.int32,
|
||||
device="cpu",
|
||||
pin_memory=self.pin_memory)
|
||||
self.seq_lens_np = self.seq_lens_cpu.numpy()
|
||||
|
||||
def _update_states(self, scheduler_output: "SchedulerOutput") -> None:
|
||||
# Remove stopped requests from the cached states.
|
||||
@ -412,11 +412,10 @@ class GPUModelRunner:
|
||||
np.cumsum(num_scheduled_tokens,
|
||||
out=self.query_start_loc_np[1:num_reqs + 1])
|
||||
|
||||
seq_lens = (self.input_batch.num_computed_tokens_cpu[:num_reqs] +
|
||||
num_scheduled_tokens)
|
||||
max_seq_len = seq_lens.max()
|
||||
self.seq_start_loc_np[0] = 0
|
||||
np.cumsum(seq_lens, out=self.seq_start_loc_np[1:num_reqs + 1])
|
||||
self.seq_lens_np[:num_reqs] = (
|
||||
self.input_batch.num_computed_tokens_cpu[:num_reqs] +
|
||||
num_scheduled_tokens)
|
||||
max_seq_len = self.seq_lens_np[:num_reqs].max()
|
||||
|
||||
# Copy the tensors to the GPU.
|
||||
self.input_ids[:total_num_scheduled_tokens].copy_(
|
||||
@ -433,8 +432,8 @@ class GPUModelRunner:
|
||||
non_blocking=True)
|
||||
query_start_loc = self.query_start_loc_cpu[:num_reqs + 1].to(
|
||||
self.device, non_blocking=True)
|
||||
seq_start_loc = self.seq_start_loc_cpu[:num_reqs + 1].to(
|
||||
self.device, non_blocking=True)
|
||||
seq_lens = self.seq_lens_cpu[:num_reqs].to(self.device,
|
||||
non_blocking=True)
|
||||
slot_mapping = self.slot_mapping_cpu[:total_num_scheduled_tokens].to(
|
||||
self.device, non_blocking=True).long()
|
||||
|
||||
@ -506,33 +505,30 @@ class GPUModelRunner:
|
||||
[0, total_num_scheduled_tokens],
|
||||
dtype=torch.int32,
|
||||
device=self.device)
|
||||
cu_prefix_kv_lens = torch.tensor([0, common_prefix_len],
|
||||
dtype=torch.int32,
|
||||
device=self.device)
|
||||
cu_suffix_kv_lens = (
|
||||
self.seq_start_loc_np[:num_reqs + 1] -
|
||||
self.arange_np[:num_reqs + 1] * common_prefix_len)
|
||||
cu_suffix_kv_lens = torch.from_numpy(cu_suffix_kv_lens).to(
|
||||
self.device)
|
||||
prefix_kv_lens = torch.tensor([common_prefix_len],
|
||||
dtype=torch.int32,
|
||||
device=self.device)
|
||||
suffix_kv_lens = (self.seq_lens_np[:num_reqs] - common_prefix_len)
|
||||
suffix_kv_lens = torch.from_numpy(suffix_kv_lens).to(self.device)
|
||||
else:
|
||||
cu_prefix_query_lens = None
|
||||
cu_prefix_kv_lens = None
|
||||
cu_suffix_kv_lens = None
|
||||
prefix_kv_lens = None
|
||||
suffix_kv_lens = None
|
||||
|
||||
attn_metadata = FlashAttentionMetadata(
|
||||
num_actual_tokens=total_num_scheduled_tokens,
|
||||
max_query_len=max_num_scheduled_tokens,
|
||||
query_start_loc=query_start_loc,
|
||||
max_seq_len=max_seq_len,
|
||||
seq_start_loc=seq_start_loc,
|
||||
seq_lens=seq_lens,
|
||||
block_table=(
|
||||
self.input_batch.block_table.get_device_tensor()[:num_reqs]),
|
||||
slot_mapping=slot_mapping,
|
||||
use_cascade=use_cascade,
|
||||
common_prefix_len=common_prefix_len,
|
||||
cu_prefix_query_lens=cu_prefix_query_lens,
|
||||
cu_prefix_kv_lens=cu_prefix_kv_lens,
|
||||
cu_suffix_kv_lens=cu_suffix_kv_lens,
|
||||
prefix_kv_lens=prefix_kv_lens,
|
||||
suffix_kv_lens=suffix_kv_lens,
|
||||
)
|
||||
# NOTE(woosuk): Due to chunked prefills, there can be at most 1 partial
|
||||
# request in the batch. While we should not sample any token from this
|
||||
|
Loading…
x
Reference in New Issue
Block a user